• 제목/요약/키워드: 종단간 음성인식

검색결과 9건 처리시간 0.024초

라벨이 없는 데이터를 사용한 종단간 음성인식기의 준교사 방식 도메인 적응 (Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition)

  • 정현재;구자현;김회린
    • 말소리와 음성과학
    • /
    • 제12권2호
    • /
    • pp.29-37
    • /
    • 2020
  • 최근 신경망 기반 심층학습 알고리즘의 적용으로 고전적인 Gaussian mixture model based hidden Markov model (GMM-HMM) 음성인식기에 비해 성능이 비약적으로 향상되었다. 또한 심층학습 기법의 장점을 더욱 잘 활용하는 방법으로 언어모델링 및 디코딩 과정을 통합처리 하는 종단간 음성인식 시스템에 대한 연구가 매우 활발히 진행되고 있다. 일반적으로 종단간 음성인식 시스템은 어텐션을 사용한 여러 층의 인코더-디코더 구조로 이루어져 있다. 때문에 종단간 음성인식 시스템이 충분히 좋은 성능을 내기 위해서는 많은 양의 음성과 문자열이 함께 있는 데이터가 필요하다. 음성-문자열 짝 데이터를 구하기 위해서는 사람의 노동력과 시간이 많이 필요하여 종단간 음성인식기를 구축하는 데 있어서 높은 장벽이 되고 있다. 그렇기에 비교적 적은 양의 음성-문자열 짝 데이터를 이용하여 종단간 음성인식기의 성능을 향상하는 선행연구들이 있으나, 음성 단일 데이터나 문자열 단일 데이터 한쪽만을 활용하여 진행된 연구가 대부분이다. 본 연구에서는 음성 또는 문자열 단일 데이터를 함께 이용하여 종단간 음성인식기가 다른 도메인의 말뭉치에서도 좋은 성능을 낼 수 있도록 하는 준교사 학습 방식을 제안했으며, 성격이 다른 도메인에 적응하여 제안된 방식이 효과적으로 동작하는지 확인하였다. 그 결과로 제안된 방식이 타깃 도메인에서 좋은 성능을 보임과 동시에 소스 도메인에서도 크게 열화되지 않는 성능을 보임을 알 수 있었다.

변분 오토인코더와 비교사 데이터 증강을 이용한 음성인식기 준지도 학습 (Semi-supervised learning of speech recognizers based on variational autoencoder and unsupervised data augmentation)

  • 조현호;강병옥;권오욱
    • 한국음향학회지
    • /
    • 제40권6호
    • /
    • pp.578-586
    • /
    • 2021
  • 종단간 음성인식기의 성능향상을 위한 변분 오토인코더(Variational AutoEncoder, VAE) 및 비교사 데이터 증강(Unsupervised Data Augmentation, UDA) 기반의 준지도 학습 방법을 제안한다. 제안된 방법에서는 먼저 원래의 음성데이터를 이용하여 VAE 기반 증강모델과 베이스라인 종단간 음성인식기를 학습한다. 그 다음, 학습된 증강모델로부터 증강된 데이터를 이용하여 베이스라인 종단간 음성인식기를 다시 학습한다. 마지막으로, 학습된 증강모델 및 종단간 음성인식기를 비교사 데이터 증강 기반의 준지도 학습 방법으로 다시 학습한다. 컴퓨터 모의실험 결과, 증강모델은 기존의 종단간 음성인식기의 단어오류율(Word Error Rate, WER)을 개선하였으며, 비교사 데이터 증강학습방법과 결합함으로써 성능을 더욱 개선하였다.

어텐션 기반 엔드투엔드 음성인식 시각화 분석 (Visual analysis of attention-based end-to-end speech recognition)

  • 임성민;구자현;김회린
    • 말소리와 음성과학
    • /
    • 제11권1호
    • /
    • pp.41-49
    • /
    • 2019
  • 전통적인 음성인식 모델은 주로 음향 모델과 언어 모델을 사용하여 구현된다. 이때 음향 모델을 학습시키기 위해서는 음성 데이터에 대한 정답 텍스트뿐만 아니라 음성인식에 사용되는 단어의 발음사전과 프레임 단위의 음소 정답 데이터가 필요하다. 이 때문에 모델을 훈련하기 위해서는 먼저 프레임 단위의 정답을 생성하는 등의 여러 과정이 필요하다. 그리고 음향 모델과 별도의 텍스트 데이터로 훈련한 언어 모델을 적용하여야 한다. 이러한 불편함을 해결하기 위하여 최근에는 하나의 통합 신경망 모델로 이루어진 종단간(end-to-end) 음성인식 모델이 연구되고 있다. 이 모델은 훈련에 여러 과정이 필요없고 모델의 구조를 이해하기 쉽다는 장점이 있다. 하지만 인식이 내부적으로 어떤 과정을 거쳐 이루어지는지 알기 어렵다는 문제가 있다. 본 논문에서는 어텐션 기반 종단간 모델을 시각화 분석하여 내부적인 작동 원리를 이해하고자 하였다. 이를 위하여 BLSTM-HMM 하이브리드 음성인식 모델의 음향 모델과 종단간 음성인식 모델의 인코더를 비교하고, 신경망 레이어 별로 어떠한 차이가 있는지 분석하기 위해 t-SNE를 사용하여 시각화하였다. 그 결과로 음향모델과 종단간 모델 인코더의 차이점을 알 수 있었다. 또한 종단간 음성인식 모델의 디코더의 역할을 언어모델 관점에서 분석하고, 종단간 모델 디코더의 개선이 성능 향상을 위해 필수적임을 알 수 있었다.

한국어 음성인식 후처리를 위한 주의집중 기반의 멀티모달 모델 (Attention based multimodal model for Korean speech recognition post-editing)

  • 정영석;오병두;허탁성;최정명;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.145-150
    • /
    • 2020
  • 최근 음성인식 분야에서 신경망 기반의 종단간 모델이 제안되고 있다. 해당 모델들은 음성을 직접 입력받아 전사된 문장을 생성한다. 음성을 직접 입력받는 모델의 특성상 데이터의 품질이 모델의 성능에 많은 영향을 준다. 본 논문에서는 이러한 종단간 모델의 문제점을 해결하고자 음성인식 결과를 후처리하기 위한 멀티모달 기반 모델을 제안한다. 제안 모델은 음성과 전사된 문장을 입력 받는다. 입력된 각각의 데이터는 Encoder를 통해 자질을 추출하고 주의집중 메커니즘을 통해 Decoder로 추출된 정보를 전달한다. Decoder에서는 전달받은 주의집중 메커니즘의 결과를 바탕으로 후처리된 토큰을 생성한다. 본 논문에서는 후처리 모델의 성능을 평가하기 위해 word error rate를 사용했으며, 실험결과 Google cloud speech to text모델에 비해 word error rate가 8% 감소한 것을 확인했다.

  • PDF

제한된 학습 데이터를 사용하는 End-to-End 음성 인식 모델 (End-to-end speech recognition models using limited training data)

  • 김준우;정호영
    • 말소리와 음성과학
    • /
    • 제12권4호
    • /
    • pp.63-71
    • /
    • 2020
  • 음성 인식은 딥러닝 및 머신러닝 분야에서 활발히 상용화 되고 있는 분야 중 하나이다. 그러나, 현재 개발되고 있는 음성 인식 시스템은 대부분 성인 남녀를 대상으로 인식이 잘 되는 실정이다. 이것은 음성 인식 모델이 대부분 성인 남녀 음성 데이터베이스를 학습하여 구축된 모델이기 때문이다. 따라서, 노인, 어린이 및 사투리를 갖는 화자의 음성을 인식하는데 문제를 일으키는 경향이 있다. 노인과 어린이의 음성을 잘 인식하기 위해서는 빅데이터를 구축하는 방법과 성인 대상 음성 인식 엔진을 노인 및 어린이 데이터로 적응하는 방법 등이 있을 수 있지만, 본 논문에서는 음향적 데이터 증강에 기반한 재귀적 인코더와 언어적 예측이 가능한 transformer 디코더로 구성된 새로운 end-to-end 모델을 제안한다. 제한된 데이터셋으로 구성된 한국어 노인 및 어린이 음성 인식을 통해 제안된 방법의 성능을 평가한다.

딥러닝 모형을 사용한 한국어 음성인식 (Korean speech recognition using deep learning)

  • 이수지;한석진;박세원;이경원;이재용
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.213-227
    • /
    • 2019
  • 본 논문에서는 베이즈 신경망을 결합한 종단 간 딥러닝 모형을 한국어 음성인식에 적용하였다. 논문에서는 종단 간 학습 모형으로 연결성 시계열 분류기(connectionist temporal classification), 주의 기제, 그리고 주의 기제에 연결성 시계열 분류기를 결합한 모형을 사용하였으며. 각 모형은 순환신경망(recurrent neural network) 혹은 합성곱신경망(convolutional neural network)을 기반으로 하였다. 추가적으로 디코딩 과정에서 빔 탐색과 유한 상태 오토마타를 활용하여 자모음 순서를 조정한 최적의 문자열을 도출하였다. 또한 베이즈 신경망을 각 종단 간 모형에 적용하여 일반적인 점 추정치와 몬테카를로 추정치를 구하였으며 이를 기존 종단 간 모형의 결괏값과 비교하였다. 최종적으로 본 논문에 제안된 모형 중에 가장 성능이 우수한 모형을 선택하여 현재 상용되고 있는 Application Programming Interface (API)들과 성능을 비교하였다. 우리말샘 온라인 사전 훈련 데이터에 한하여 비교한 결과, 제안된 모형의 word error rate (WER)와 label error rate (LER)는 각각 26.4%와 4.58%로서 76%의 WER와 29.88%의 LER 값을 보인 Google API보다 월등히 개선된 성능을 보였다.

VoIP 서비스를 위한 음성 품질 평가 기술 동향 (Trends of Voice Quality Measurement for VoIP Service)

  • 정옥조;박주영;강신각
    • 전자통신동향분석
    • /
    • 제19권3호통권87호
    • /
    • pp.136-144
    • /
    • 2004
  • 인터넷의 발달 및 VoIP의 보급으로 인해 VoIP 서비스의 품질에 대한 관심이 증가하고 있다. 그 동안은 망사업자 관점에서 망의 품질을 개선하기 위한 MPLS, Diffserv, RSVP 등의 연구가 진행되어 왔으나, 실제로 서비스 품질은 망뿐만 아니라 단말 등의 품질에도 영향을 받기 때문에 망 사업자의 관점에서 보는 서비스 품질 기준이 아닌, 고객의 관점에서 인식 가능한 수준에서의 종단간 서비스 품질을 다룰 필요가 있다. 본 고에서는 서비스 품질이란 무엇인지 살펴보고, 국제표준단체의 서비스 품질 관련 연구 및 VoIP 서비스를 위한 음성 품질 평가 기술에 대하여 살펴본다.

청각장애인을 위한 음성인식 기반 메시지 전송 시스템 (Speech Recognition based Message Transmission System for the Hearing Impaired Persons)

  • 김성진;조경우;오창헌
    • 한국정보통신학회논문지
    • /
    • 제22권12호
    • /
    • pp.1604-1610
    • /
    • 2018
  • 음성인식 서비스는 청각장애인에게 화자의 음성을 텍스트로 변환하여 시각화함으로써 의사소통의 보조적인 수단으로 사용되고 있다. 하지만 강의실 및 회의실과 같은 개방된 환경에서는 다수의 청각장애인에게 음성인식 서비스를 제공하기 힘들다. 이를 위해 주변 환경에 따라 음성 인식 서비스를 효율적으로 제공하기 위한 방법이 필요하다. 본 논문에서는 화자의 음성을 인식하여 변환된 텍스트를 다수의 청각장애인에게 메시지로 전달하는 시스템을 제안한다. 제안하는 시스템은 다수의 사용자에게 동시에 메시지를 전달하기 위해 MQTT 프로토콜을 사용한다. MQTT 프로토콜의 QoS level 설정에 따른 제안 시스템의 서비스 지연을 확인하기 위해 종단 간 지연을 측정하였다. 측정 결과 가장 신뢰성이 높은 QoS level 2와 0간의 지연이 111ms로 대화 인식에 큰 영향을 끼치지 않음을 확인하였다.

로컬 프레임 속도 변경에 의한 데이터 증강을 이용한 트랜스포머 기반 음성 인식 성능 향상 (Improving transformer-based speech recognition performance using data augmentation by local frame rate changes)

  • 임성수;강병옥;권오욱
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.122-129
    • /
    • 2022
  • 본 논문은 프레임 속도를 국부적으로 조절하는 데이터 증강을 이용하여 트랜스포머 기반 음성 인식기의 성능을 개선하는 방법을 제안한다. 먼저, 원래의 음성데이터에서 증강할 부분의 시작 시간과 길이를 랜덤으로 선택한다. 그 다음, 선택된 부분의 프레임 속도는 선형보간법을 이용하여 새로운 프레임 속도로 변경된다. 월스트리트 저널 및 LibriSpeech 음성데이터를 이용한 실험결과, 수렴 시간은 베이스라인보다 오래 걸리지만, 인식 정확도는 대부분의 경우에 향상됨을 보여주었다. 성능을 더욱 향상시키기 위하여 변경 부분의 길이 및 속도 등 다양한 매개변수를 최적화하였다. 제안 방법은 월스트리트 저널 및 LibriSpeech 음성 데이터에서 베이스라인과 비교하여 각각 11.8 % 및 14.9 %의 상대적 성능 향상을 보여주는 것으로 나타났다.