• Title/Summary/Keyword: 조직 팬텀

Search Result 153, Processing Time 0.026 seconds

A Study on the Efficiency Evaluation of Ultrasound Therapy Using Varicose Vein Simulated Tissue Phantom and Tissue Equivalent Phantom (하지정맥류 모사 생체조직 팬텀과 조직등가 팬텀을 이용한 초음파 치료효과 평가에 관한 연구)

  • Kim, Ju-Young;Jung, Tae-Woong;Shin, Kyoung-Won;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2018
  • Because of the expectation of the non-invasive treatment effect, Various studies on the treatment of varicose veins using focused ultrasound are reported. In this study, the bio-tissue phantom and tissue equivalent phantom that can be applied to estimation of ultrasonic varicose veins treatment effect. Each phantom was evaluated for its usefulness by evaluating the acoustic characteristics and the shrinkage rate according to the ultrasonic irradiation. A multi-layer structure phantom with three layers of skin, fat, and muscle was constructed considering the structure of the tissue where the varicose veins occurred. The materials constituting each layer were made to have characteristics similar to human body. In addition, the multi-layered phantoms with blood vessel mimic tube, with bovine blood vessel, and with animal tissue were fabricated. The degree of shrinkage of blood vessel mimic material and vascular tissue according to ultrasonic irradiation was evaluated using B-mode image. As the results of this study, it was thought that the proposed phantom could be used effectively in the evaluation of ultrasonic varicose veins treatment. In addition, it is thought that these phantoms could be applied to the development of varicose vein treatment device using the focused ultrasound and the verification of the therapeutic effect.

Analysis of Tissue Equivalent Characteristics of Agar Phantom for Hyperthermia Therapy (온열종양치료 한천 팬텀의 조직등가 특성 분석)

  • Jeong-Geun Park;Kyeong-Hwan Jeong;Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.985-991
    • /
    • 2023
  • A tissue-equivalent phantom is necessary for quality control of hyperthermia therapy. However, since there is no phantom for this purpose, phantoms made from agar are being used in various studies. The tissue-equivalent properties of the agar phantom were confirmed by comparison with the tissue-equivalent material bolus in this study. CT images of the agar phantom and bolus were acquired, and tissue equivalent characteristics were analyzed with image analysis and dose calculation using a computerized radiation therapy planning system. The average pixel value was 96.960±10.999 in bolus, 108.559±8.233 in 3% agar phantom, and 111.844±8.651 in 4% agar phantom. Using the SSD technique, 100 cGy was prescribed at a depth of 1.5 cm and 6 MV X -ray was set to irradiated to 10x10 cm2, and the absorbed dose according to depth was calculated from the central axis of the beam. The intraclass correlation coefficient of dose distribution of bolus, 3% agar phantom, and 4% agar phantom was 0.979 (p<.001, 95%CI .957-.991). The density (g/cm3) at the point where the absorbed dose was calculated was 0.990±0.020 at the bolus, 1.018±0.020 at the 3% agar phantom, and 1.035±0.024 at the 4% agar phantom. In this study, the internal density distribution and uniformity of the agar phantom were confirmed to be appropriate as a tissue equivalent material by analysis of CT images and a computerized radiation therapy planning system.

Development of Human-Head-Mimicking Phantom for Brain Treatment Using Focused Ultrasound (집속 초음파 뇌 질환 치료를 위한 두부 유사 팬텀의 개발)

  • Min, Jeonghwa;Kim, Juyoung;Noh, Sicheol;Choi, Heungho
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.433-439
    • /
    • 2013
  • In this study, human head-mimicking phantom was developed for brain disease treatment study using focused ultrasound. Acoustic parameters of skin, skull and brain were investigated through literature investigation and adequate substitutes according to each tissue were suggested. In the case of skin phantom, construction ratio of glycerol-based TMM phantom was controlled to mimic real skin. The suitability of skull substitutes was evaluated through measurement of acoustic parameters. In the case of brain phantom, transparent egg white phantom was used to observe thermal properties of focused ultrasound. Combined human-head-mimicking phantom using each substitutes was fabricated for development of brain disease treatment protocol. Denaturation of brain phantom according to ultrasonic condition was observed for validation.

Ultrasonic Phantom Based on Plastic Material for Elastography (초음파 탄성 영상 평가를 위한 플라스틱 기반의 팬텀 개발)

  • Ahn, Dong-Ki;Joung, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.368-373
    • /
    • 2009
  • A human tissue mimicking phantom is constructed to assess the performance of a medical ultrasound elasticity imaging system. In a human body, the tumor or cancer is stiffer than its surrounding normal tissue. A technique fur imaging the elasticity of such a tissue is referred to as elastography. Homogeneous elasticity phantoms with differing Young's moduli are constructed using a plastic hardener and softener to simulate the mechanical characteristics of a diseased human tissue. The Young's modulus of the fabricated homogeneous phantom materials were measured from 11.1 to 79.6 kPa depending on the mixing ratio of the amount of the hardener to that of the softener. An ultrasound lesion mimicking phantom was made of these materials, and ultrasound elasticity imaging was performed on it. It is confirmed in this paper that the fabricated plastic-based elasticity phantom is useful in representing the elastic characteristics of a human tissue.

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF

Diagnosis of Micro-Calcified Lesions of Breast Tissue Phantoms Using Acoustic Resonance Coupled with Power Doppler (공명현상과 파워도플러를 이용한 유방조직 팬텀의 미세 석회화 병변 진단)

  • Kim, Jeong-Koo;Ha, Myeung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Breast ultrasound has many advantages over mammography but suffers from a shortcoming of being not suitable in detecting microcalcification. We studied on a method based on acoustic resonance and power Doppler to detect calcification of breast tissue using a typical 7.5 MHz linear probe used in breast ultrasound examination. We first constructed a breast tissue phantom made of gelatin and then observed calcified legions as external vibrations varied. Calcification injected to the breast tissue phantom being resonated different from the surrounding medium, and its acoustic resonance driven by external vibrations was visualized by differences for color brightness and area in ROI of power doppler. In low frequency regions, the acoustic resonance almost not appeared and showed a plateau in $300{\sim}600\;Hz$ and the color vanished as the frequency further increased.

A Study on Elbow Phantom Production and Usability Evaluation by Adjusting Infill Density using 3D Printing (3D 프린팅을 사용한 Infill 조절에 따른 Elbow 팬텀 제작 및 유용성 평가에 관한 연구)

  • Myung-In Kim;Seung-Ho Ji;Hyun-Seop Wi;Dae-Won Lee;Hui-Min Jang;Myeong-Seong Yun;Dong-Kyoon Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.929-937
    • /
    • 2023
  • Human equivalent phantoms manufactured using 3D printers are cheaper and can be manufactured in a short time than conventional human phantoms. However, many phantoms are manufactured with less than 100 % of Infill Density, one of the 3D printer output setting variables. Therefore, this study compared the Bone Phantom CT number, which differs from the ratio of five Infill Density produced using a 3D printer, to the CT number of the actual human body Bone. In addition, the usefulness of the manufactured phantom was evaluated by producing a 100 % elbow joint phantom with Infill Density and setting the Infill Density to 100 % through CT number comparison for each tissue on computed tomography (CT). As a result, the Bone Phantom printed with 100 % Infill Density did not show the most statistically significant difference from the CT number value of the actual human Bone, and the CT number of each tissue did not show a statistically significant difference from the CT number value of each tissue of the actual human elbow joint.

Dose Calculation of Heterogeneous Lung Tissue on 6MV X-ray Therapy (6MV X-선에 의한 폐조직의 심부선량변화와 임상응용)

  • 이경자;장승희;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • For effective radiotherapy, it should always be considered that calculation of different dose distribution in heterogenous tissue is important particularly on lung which has low density and large volume. To take precise dose distribution of 6MV X-ray in the thoracic cage, the authors had made a tissue equivalent phantom for thorax, measured dose distribution by thermoluminescent dosimeter and mm dosimeter, and derived methmetical equation coincided with provided theoretical formula. In comparision with isodose curve on case of homogeneous soft tissue, dose of heterogeneous lung tissue had been shown increase about 4% per cm depth on one and multiportal field, less than 15% difference on rotation field for esophagus, and around 20% difference on rotation field for lung according to the degree of rotation angle that must be corrected by dose compensation.

  • PDF

Characteristic Changes Observation of N-isopropylacrylamide Phantom by Repeated Ultrasound Irradiation (초음파 반복 조사에 따른 NIPAM 팬텀의 특성 변화 관찰)

  • Kim, Ju-Young;Kim, Jae-Young;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.509-513
    • /
    • 2015
  • In this study, we evaluated the thermal denaturation characteristics of reusable NIPAM tissue mimicking (TM) Phantom by measuring the thermal sensitivity. And the changes of acoustic characteristic and thermal denaturation shape in NIPAM TM phantom according to the number of re-use time and re-use period were observed. With the result, as the sonication time is increased, the sound velocity of NIPAM phantom was decreased by 100 m/s and the attenuation was increased slightly. However, the changes according to the re-use period was not observed. In the thermal denaturation shape and size observation by ultrasound sonicaton, the remarkable changes have not been confirmed. With the result of this study, NIPAM Phantom was considered appropriate to evaluate and predict the effect of therapeutic ultrasound by in repeated sonication test.

The Implementation of TMM test phantom for evaluating the thermal performance in High Intensity Focused Ultrasound system (강력 집속 초음파 시스템의 열적 성능 평가를 위한 팬텀 개발에 관한 기초연구)

  • Yu, Woo-Jin;Noh, Si-Cheol;Park, Moon-Kyu;Min, Hae-Ki;Park, Jae-Hyun;Choi, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.484-485
    • /
    • 2008
  • 초음파는 의학적 진단 및 치료의 목적으로 널리 사용되어 왔다. 일반적으로, 초음파 조사의 생물학적 무해성은 많은 연구를 통하여 보고되었으나, 최근 초음파 집속을 통한 강력 초음파의 사용에 대한 열적 안전성 평가가 중요한 요소로 대두되고 있다. 이에 본 연구에서는 강력 집속 초음파의 전달 에너지와 열적 분포를 측정하여 안전성 평가에 활용 가능한 초음파 열분포 팬텀을 제안하였다. 온도 분포 측정용 팬텀은 초음파 조직유사 팬텀 재료인 한천을 이용하였으며, 음향학적 특성의 유사성을 평가하였다. 온도 효과를 측정하기 위하여 $3{\times}3$의 형태로 온도 센서를 팬텀 내부에 배열하여 초음파 조사에 따른 온도 분포를 측정하였고 온도 측정을 위한 시스템을 개발하여, 초음파 가열 실험을 수행하였다. 본 연구에서 제안된 초음파 온도 분포 측정용 팬텀의 유용성을 확인하였으며, 온도 분포용 팬텀을 통한 강력 집속 초음파 장비의 열적 성능 평가에 적용 될 수 있을 것으로 사료되었다.

  • PDF