• Title/Summary/Keyword: 조직등가비례계수기

Search Result 7, Processing Time 0.025 seconds

A Study on the Photoneutron Dose Estimation in Flattening Filter Mode and Flattening Filter Free Mode for Medical Linear Accelerator (의료용 선형가속기의 Flattening Filter Mode와 Flattening Filter Free Mode 간에 광중성자 선량 평가)

  • Yang, Oh Nam;Lim, Cheong Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.297-302
    • /
    • 2017
  • In this study, the generation of photoneutrons between the 10 MV FF mode and the FFF mode was evaluated and the amount of photoneutrons generated by the 10 MV and 15 MV energy changes in the FFF mode was evaluated. The generated neutrons were evaluated at 13 measurement points and the KTEPC was used to collect the generated neutrons. 10 MV FF mode was measured at 10 MV FF mode and FFF mode at all measurement points. In the superior direction, 0.455mSv and 0.152mSv were the largest, and more than 33% optical neutron was generated in FF. 10 MV in FFF mode, 15 MV in 15 MV, and 0.402 mSv in the direction of Superior, and 6.9% in the direction.

Development and Characterization of Multi-Segmented Tissue Equivalent Proportional Counter for Microdosimetry (마이크로 도시메트리용 다분할 조직등가비례계수기의 개발과 특성 평가)

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Moon, Myung Kook;Lim, Chang Hwy;Lee, Suhyun;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • We designed, developed and characterized a multi-segmented tissue equivalent proportional (TEPC) counter for microdosimetry. The energy resolution of the multi-segmented TEPC was about 12% for $^{241}Am$ 5.45 MeV alpha particles. The resolution was better than 33% for a single un-segmented TEPC. A compact and low power consumption TEPC could be made by using digital pulse processor (DPP). We also successfully calibrated the TEPC by using $^{252}Cf$ standard neutron source in Korea Research Institute of Standards and Science (KRISS). According to the results, the TEPC is useful for several application of radiation monitoring such as a neutron monitor, air crew monitor and space dosimeter.

Measurement of Linear Energy Spectra for 135 MeV/u Carbon Beams in HIMAC Using Prototype TEPC (프로토 타입 조직등가비례계수기의 중입자가속기연구소의 135 MeV/u 탄소 이온에 대한 선형에너지 스펙트럼 측정)

  • Nam, Uk-Won;Lee, Jaejin;Pyo, Jeonghyun;Park, Won-Kee;Moon, Bong-Kon;Lim, Chang Hwy;Moon, Myung Kook;Kitamure, Hisashi;Kobayashi, Shingo;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.197-201
    • /
    • 2014
  • TEPC (Tissue Equivalent Proportional Counter) was usually used for high LET radiation dosimetry. We developed a prototype TEPC for micro-dosimetry in the range of $0.2{\sim}300 keV/{\mu}m$. And, the simulated site diameter of the TEPC is $2{\mu}m$, of similar size to a cell nucleus. For purposes of characterization the response for high LET radiation of the TEPC has been investigated under 135MeV/u Carbon ions in HIMAC (Heavy Ion Medical Accelerator). We determined the gas multiplication factor and measured the lineal energy spectrum [yd(y)] of 135 MeV/u Carbon ions. The value of the gas multiplication factor was 315 at 700 V bias voltage. As a result of the experiment, we could more understand the performance of the TEPC for high LET (Linear Energy Transfer) radiation. And the procedure of high LET radiation dosimetry using TEPC is established.

SIMULATION OF THE TISSUE EQUIVALENT PROPORTIONAL COUNTER IN THE INTERNATIONAL SPACE STATION WITH GEANT4 (Geant4를 활용한 국제우주정거장 내의 조직등가비례계수기 모의 실험)

  • Pyo, Jeong-Hyun;Lee, Jae-Jin;Nam, Uk-Won;Kim, Sung-Hwan;Kim, Hyun-Ok;Lim, Chang-Hwy;Park, Kwi-Jong;Lee, Dae-Hee;Park, Young-Sik;Moon, Myung-Kook
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.81-86
    • /
    • 2012
  • The International Space Station (ISS) orbits the Earth within the inner radiation belt, where high-energy protons are produced by collisions of cosmic rays to the upper atmosphere. About 6 astronauts stay in the ISS for a long period, and it should be important to monitor and assess the radiation environment in the ISS. The tissue equivalent proportional counter (TEPC) is an instrument to measure the impact of radiation on the human tissue. KASI is developing a TEPC as a candidate payload of the ISS. Before the detailed design of the TEPC, we performed simulations to test whether our conceptual design of the TEPC will work propertly in the ISS and to predict its performance. The simulations estimated that the TEPC will measure the dose equivalent of about 1:1 mSv during a day in the ISS, which is consistent with previous measurements.

Calibration of CR-39 for Hadron Radiotherapy using 400 MeV/u C ions (400 MeV/u 탄소 이온에 대한 방사선치료 선량 측정용 고체비적검출기의 교정)

  • Kim, Sunghwan;Nam, Uk-Won;Lee, Jaejin;Park, Won-Kee;Pyo, Jeonghyun;Moon, Bong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • In this study, equivalent dose and LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) were performed using 400 MeV/u C heavy ions in HIMAC (Heavy Ion Medical Accelerator in Chiba) for high LET radiation therapy. The irradiated CR-39 SSNDTs were etched according the etching condition of JAXA (Japan Aerospace Exploration Agency). And the etched SSNTDs were analyzed by using Image J. Determined frequency mean dose (${\bar{y_D}}$)and dose-mean lineal energy (${\bar{y_F}}$)of 400 MeV/u C are about 8.5keV/mm and 10.1 keV/mm, respectively by using the CR-39 SSNTD. This value is very similar to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC (Tissue Equivalent Proportional Counter) active radiation detector. We could determine the equivalent dose and LET calibration factors of CR-39. And we confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry in hadron radiotherapy.

Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator (고에너지 방사선치료 시 치료변수에 따른 광중성자 선량 변화 연구)

  • Kim, Yeon Su;Yoon, In Ha;Bae, Sun Myeong;Kang, Tae Young;Baek, Geum Mun;Kim, Sung Hwan;Nam, Uk Won;Lee, Jae Jin;Park, Yeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • Purpose : Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam ($E{\geq}8MeV$). Materials and Methods : TrueBeam $ST{\time}TM$(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : $5{\time}5cm$). Results : The mean values of the detected photoneutron dose from IMRT and VMAT were $449.7{\mu}Sv$, $2940.7{\mu}Sv$. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as $2940.7{\mu}Sv$, $232.0{\mu}Sv$. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were $3242.5{\mu}Sv$, $3189.4{\mu}Sv$, $3191.2{\mu}Sv$ with case 1, $3493.2{\mu}Sv$, $3482.6{\mu}Sv$, $3477.2{\mu}Sv$ with case 2 and $4592.2{\mu}Sv$, $4580.0{\mu}Sv$, $4542.3{\mu}Sv$ with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$, $225^{\circ}$, $270^{\circ}$, $315^{\circ}$) were measured as $3.2{\mu}Sv$, $4.3{\mu}Sv$, $5.3{\mu}Sv$, $11.3{\mu}Sv$, $14.7{\mu}Sv$, $11.2{\mu}Sv$, $3.7{\mu}Sv$, $3.0{\mu}Sv$ at 10MV and as $373.7{\mu}Sv$, $369.6{\mu}Sv$, $384.4{\mu}Sv$, $423.6{\mu}Sv$, $447.1{\mu}Sv$, $448.0{\mu}Sv$, $384.5{\mu}Sv$, $377.3{\mu}Sv$ at 15MV. Conclusion : As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam $ST{\time}TM$. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.