• Title/Summary/Keyword: 조적조 보강

Search Result 28, Processing Time 0.028 seconds

Seismic Capacity Strengthened by GFS of Masonry Buildings with Earthquake Damage (지진피해를 입은 조적조 건축물의 유리섬유보강에 따른 내진성능)

  • Kwon, Ki-Hyuk;Choi, Sung-Mo;Lee, Soo-Cheul;Cho, Sang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.231-237
    • /
    • 2004
  • Most of the masonry buildings have many structural defects under an earthquake load due to the small tensile force and ductility. In the foreign countries there are many the reinforcing methods of masonry buildings, but the glass fiber sheet reinforcements must be used due to various conditions in Korea. The purpose of this paper is to estimate the seismic capacity of masonry buildings damaged by earthquake and reinforced by Glass Fiber Sheet. On the basis of test results, the maximum base shear force and deformation of the masonry building with GFS were remarkably increased. From the comparison by existing strength equations and test data, the new strength equation of reinforced masonry buildings with GFS was developed.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

An Experimental Study for Reinforcement Effect of Adhesive Stiffeners Depending on the Aspect Ratio of Masonry Wall (조적벽체의 형상비에 따른 접착형 보강재의 보강효과에 관한 실험적 연구)

  • Park, Byung-Tae;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • Unreinforced masonry buildings are vulnerable to lateral forces, such as earthquakes, owing to the nature of the building materials, yet numerous masonry buildings remain in South Korea. Since the majority of the existing masonry buildings were constructed more than 20 years ago, it is necessary to develop economical reinforcement methods for disaster reduction. In this study, external reinforcement of masonry walls using adhesive stiffeners was proposed as a reinforcement method for such age-old masonry buildings. Six specimens were fabricated with different aspect ratios (L/H = 1.0, 1.3, and 2.0) and used in static load tests to verify the reinforcement effect. The experimental results showed that the masonry walls before and after reinforcement were ruptured by rigid body rotation and slip. In addition, the maximum strength, maximum displacement, and dissipated energy of the walls were shown to increase after applying the adhesive stiffeners, thereby verifying the excellent reinforcement effect. Furthermore, an adhesive stiffener design for unreinforced masonry walls was proposed based on the increased shear strength achieved by using conventional glass fibers. The proposed design can be used as a basis for the application of adhesive stiffeners for unreinforced masonry walls.

An Experimental Study on Seismic Capacity Improvement of Masonry Buildings by Glass Fiber Reinforced Methods (유리섬유보강에 의한 조적조 건축물의 내진 성능향상에 관한 실험 연구)

  • Cho, Sang-Min;Choi, Sung-Mo;Kwon, Ki-Hyuk;Lee, Su-Cheul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.47-52
    • /
    • 2004
  • Whereas The masonry buildings are safe under gravity loads, most of the masonry buildings in Korea have many structural defects under a lateral load due to an earthquake acceleration. But there is no earthquake resistant design code for the Masonry in Korea. Therefore it may be necessary to be set up an seismic code and be suggested for reinforcing methods for existing masonry buildings. The purpose of this paper is to investigate seismic capacity of reinforced masonry buildings subjected to earthquake load. The typical two models of the masonry building in Korea are selected through a site investigation. On the basis of test results, the fiber reinforcing effect of the two models was considerable. The maximum base shear force and deformation capacity for RM were remarkably increased. It was found that the pier rocking failure was a dominant mode for the RM buildings during a seismic excitation.

Evaluation of Spraying Characteristics for Masonry Buildings Seismic Retrofit Fiber-Reinforced Mortar (조적조 내진보강용 섬유보강 모르타르의 분사특성 평가)

  • Hwang, Byoung-Il;Park, Jong-Pil;Yoo, Byung-Hyun;Lee, Dong-gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.37-43
    • /
    • 2020
  • The seismic reinforcement ratio of SOC facilities, such as domestic roads and railroads, is 96%. Out of approximately 7 million buildings as of 2016, only 0.51 million buildings with seismic performance were secured. Although the proportion of masonry structures is 38.8% of the total buildings, there is almost no seismic resistance, only 2.0%. To solve the problem in Korea, government-level seismic measures are being promoted, but the situation is insufficient. Overseas, the UBC research team in Vancouver, Canada, has developed and used EDCC to reinforce the seismic performance of masonry buildings. EDCC is a construction material that can secure concrete ductility capability by mixing fibers and secure deformation resistance of concrete through bridging action. It is necessary to examine various materials because EDCC is not used as a spray type of secure seismic reinforcement. In this study, as part of the research and development of spraying materials to improve the durability of masonry buildings, this study examined the spraying characteristics of fiber-reinforced mortar according to fiber use and the viscosity change according to the use of thickener. As a result, the working performance of the fiber-reinforced mortar for seismic reinforcement was improved when using 1% fiber and 1% thickener.

A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall (외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구)

  • Kim, Sun-Woo;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF

A Study on Seismic Performance of External Reinforcement for Unreinforced Masonry Buildings (비보강 조적조 건축물의 외부 보강에 따른 내진성능 연구)

  • Jong-Yeon Kim;Jong Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • In this study, we evaluated the seismic performance of a masonry building that was not designed to be earthquake-resistant and attempted to improve the seismic performance by adopting a seismic reinforcement method on the exterior of the building. In addition, the building seismic design standards and commentary(KDS 41 17 00:2019) and existing facility(building) seismic performance evaluation methods were applied to evaluate seismic performance, and a pushover analysis was performed using non-linear static analysis. As the result of this study, it was determined that seismic reinforcement was urgent because the distribution rate of earthquake-resistant design of houses in Korea was low and masonry structures accounted for a large proportion of houses. When reinforcing the steel beam-column+brace frame in a masonry building, the story drift angle was 0.043% in the X direction and 0.047% in the Y direction, indicating that it satisfied the regulations. The gravity load resistance capacity by performance level was judged to be a safe building because it was habitable in both X and Y directions. In conclusion, it is believed that the livability and convenience of the house can be secured by reinforcing the exterior of the building and the seismic performance and behavior of the structure can be clearly predicted.

A Study on Performance Evaluation of Masonry Thermal Bridge Blocking Brackets for Building Energy Efficiency (건축물에너지 효율을 위한 조적조 열교 차단 브라켓의 성능 평가 연구)

  • Kim, Woong-Hoi;Kim, Hyung-Kyu;Lee, Tae-Gyu;Lee, Jae-Hyun;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.175-176
    • /
    • 2023
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware(connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. As a result of the evaluation, it was confirmed that the performance was improved compared to the existing bracket, and we plan to carry out a real-life test and long-term performance review of the building using the bracket in the future.

  • PDF

An Experimental Study on Strength and Ductility of Masonry Buildings Retrofitted by Metal Connectors (조적조 건물의 연결철물보강에 따른 내력 및 연성에 관한 실험적 연구)

  • Park, Byung-Tae;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2015
  • Building using masonry accounts for most of the smaller houses in Korea but due to brittle behavior and low ductility the frequency of usage has decreased in recent years. Despite this, this form of building has been gaining attention overseas for its low cost in construction and environment-friendliness of the materials. As such, many studies are being conducted to resolve the disadvantages in structure. This study produced an specimen for masonry-filled wall and the intersection to confirm the difference in structural movement depends on the existence or lack of expansion joint and verified the reinforcement effect from inserting a connecting steel item (steel plate, stainless steel twist bar). The experiment results show that the specimen with a steel plate inserted saw an increase in durability and an improvement in the strength of the specimens, while the specimen that had stainless steel twists bar inserted saw an increase in ductility that did not cause brittle failure, indicating that the reinforcement effects of inserting a connecting steel item are effective.

Strengthening of shear resistance of masonry walls (조적벽체의 전단강도 향상 방안에 관한 연구)

  • Kang, Sung-Hun;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper presents an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using honeycomb steel mesh. The performance of masonry walls strengthened with steel mesh will compare with unreinforced masonry walls to show the performance of reinforced masonry walls. According to the experiment, it is expected that this system is effective to enhance the shear strength and ductility of the masonry walls.

  • PDF