• Title/Summary/Keyword: 조인트 좌표계

Search Result 11, Processing Time 0.018 seconds

An Implicit Integration Method for Joint Coordinate Subsystem Synthesis Method (조인트 좌표계를 이용한 부분시스템 합성방법의 내재적 적분기법)

  • Jo, Jun-Youn;Kim, Myoung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.437-442
    • /
    • 2012
  • To analyze a multibody system, this paper proposes an implicit numerical integration method for joint coordinates subsystem synthesis method. To verify the proposed method, a multibody model for an unmanned robot vehicle, which consists of six identical independent suspension systems, is developed. The symbolic method is applied to compute the system Jacobian matrix for the implicit integration method. The proposed method is also verified by performing rough terrain run-over simulation in comparison with the conventional implicit integration method. In addition, to evaluate the efficiency of the proposed method, the CPU time obtained by using this method is compared with that obtained by using the conventional implicit method.

Kinematic Based Walking Pattern of Biped robot (기구학을 이용한 이족보행 로봇의 보행패턴)

  • Kim, Dong Won
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.2
    • /
    • pp.7-11
    • /
    • 2018
  • In this paper, kinematic based walking pattern generation of biped walking robot is reviewed. Biped walking robot should be consisted of 6 Degree of Freedom(DOF) for each leg to walk properly in 3 dimensional circumstance. In this paper, simple structure of biped robot is depicted for walking pattern firstly. After fixing path of ankle of the robot, angle joints are coming from kinematic equatioins. Coordination of joints of a robot was set for dynamic analysis also. So walking pattern of a robot will be designed using dynamic equations of coordination of joint angles. Finally, setting of ankle of robot and pattern generation are key procedures of the robot walking.

Gun System Vibration Analysis using Flexible Multibody Dynamics (유연 다물체 동역학을 이용한 포신-포탑시스템의 진동해석)

  • 김성수;유진영
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.203-211
    • /
    • 1998
  • In order to find out relationship between hit probability and gun firing of a moving tank, a turret and flexible gun system model has been developed using a recursive flexible multibody dynamics. For a firing simulation model, nodal coordinates for a finite element model of a flexible gun have been employed to include transverse loads to the gun tube due to moving bullet and ballistic pressure. Modal coordinates are also used to represent the motion induced gun vibration before a firing occurs. An efficient switching technique from modal equations to nodal equation has been introduced for an entire gun firing simulation with a rotating turret.

  • PDF

로봇 동력학

  • 김호룡
    • Journal of the KSME
    • /
    • v.28 no.2
    • /
    • pp.138-145
    • /
    • 1988
  • 본 글에서는 로봇의 운동학적 및 동력학적 문제를 풀기 위한 기본적 이론과 그 적용례를 들었다. 운동학적 고찰은 로봇 링크의 위치와 방향을 설정하기 위한 동차변환에 근거하여 이루어졌고, 기준좌표계와 조인트 좌표계사이의 정변환과 역변환이 정운동학과 역운동학적 과정에서 고찰되 었다. 동력학적 과정에서는 로봇은 능동기구로 간주하여 운동방정식이 유도되었으며 이 유도 과정에서 운동학적 분석결과가 어떻게 사용되는가를 살펴보았다. 한편 유도된 운동방정식이 어떻게 활용되는가를 정동력학과 역동력학적 과정을 통하여 살펴보았으며 이러한 과정들은 로 봇의 설계, 모델링(simulation), 제어 등 연구에 기초이론으로 사용됨을 적용례를 통하여 보였고 일반적으로 정운동학, 역운동학, 역동력학, 정동력학의 순으로 전개됨이 합리적이라는 것을 인 지하였다.

  • PDF

A study on the analysis and design for VTR deck mechanisms using CAE (CAE를 이용한 VTR Deck기구의 해석 및 설계)

  • 박태원;범진환;한형석;김명규;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.223-235
    • /
    • 1993
  • VTR(Video Tape Recorder) has very complicated mechanisms composed of various cams, links, gears and so on. To satisfy kinematic requirements of VTR components, various geometric constraints between rigid bodies and a translational cam design program are developed. Mechanisms of VTR are divided into functional groups like a control part, a loading part and a tape guide part. Each group is modeled for kinematic and dynamic analysis. Finally, all groups are combined together for a complete VTR model and loads required for each function of VTR controls are studied. Detailed description of developed programs are presented and result are discussed.

Analysis of Spatial Mechanism Using Symbolic Computation (기호예산을 이용한 공간기구의 해석)

  • 이동민;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1509-1517
    • /
    • 1993
  • The purpose of this study is to develop a program for the automatic derivation of the symbolic equations necessary for the kinematic and dynamic analyses of the spatial mechanism. For this purpose, a symbolic manipulation package called MCSYMA is used. Every symbolic equation is formulated using relative joint coordinate to obtain the numerically efficient system equations. These equations are produced in FORTRAN statements and linked to a FORTRAN program for numerical analysis. Several examples are taken for comparison with the commercial package called DADS which is using Cartesian coordinate approach. Also, this symbolic formulation approach is compared with a conventional numerical approach for an example. The results show that this symbolic approach with relative joint coordinate system is most efficient in computational time among three and is recommended for the derivation of macro elements frequently used.

Dynamic Analysis of Flexible Mechanical System (폐쇄계를 포함하는 탄성 기계시스템의 동역학적 해석)

  • 안덕환;이병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.271-276
    • /
    • 1995
  • This paper presents a systematic method for the dynamic analysis of flexible mechanical systems containing closed kinematic loops. Kinematics between pairs of contiguous flexible bodies is described with the joint coordinates and the deformation modal coordinates. The cut-joint constraint equations associated with the closed kinematic loops are derived, simply using the geometric conditions. The equations of motions are initially written in terms of the joint and modal coordinates using the velocity transformation technique. Lagrange multipliers associated with the cut-joint constraints for closed-loop systems are then eliminated systematically using the generalized coordinate partitioning method, resulting to a minimal set of equations of motion.

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

An Efficient Iterative Inverse Kinematic Analysis for General Robot Manipulators Using Near Position (근접 위치를 이용한 일반적인 로봇 매니퓰레이터의 효율적인 반복적 역기구학 해석 문제)

  • 강성철;조소형;김문상;조선휘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1640-1648
    • /
    • 1991
  • 본 연구에서는 이러한 편사 함수 최소화의 방법을 적용함에 있어 보다 안정된 수렴성과 계산 시간을 단축시키기 위하여 근접 위치 방법(near position method)을 개 발하여 적용하였다. 근접 위치 방법이란 이론적 해석법으로 풀기가 불가능한 기구학 을 갖는 6관절 로봇을 반복적 해석법을 사용한다는 것을 전제로 하여, 초기 위치를 목 표 위치에 가능한 근접하게 잡아서 반복 계산을 수행하는 방법으로써 로봇의 기구학적 자세에 따른 수렴의 불안정성을 방지하고, 계산 시간을 단축하는데 그 목적이 있다.

A Study on Object Tracking for Autonomous Mobile Robot using Vision Information (비젼 정보를 이용한 이동 자율로봇의 물체 추적에 관한 연구)

  • Kang, Jin-Gu;Lee, Jang-Myung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • An Autonomous mobile robot is a very useful system to achieve various tasks in dangerous environment, because it has the higher performance than a fixed base manipulator in terms of its operational workspace size as well as efficiency. A method for estimating the position of an object in the Cartesian coordinate system based upon the geometrical relationship between the image captured by 2-DOF active camera mounted on mobile robot and the real object, is proposed. With this position estimation, a method of determining an optimal path for the autonomous mobile robot from the current position to the position of object estimated by the image information using homogeneous matrices. Finally, the corresponding joint parameters to make the desired displacement are calculated to capture the object through the control of a mobile robot. The effectiveness of proposed method is demonstrated by the simulation and real experiments using the autonomous mobile robot.

  • PDF