• Title/Summary/Keyword: 조인트 구속조건

Search Result 16, Processing Time 0.021 seconds

Dynamics Analysis for Flexible Systems using Finite Elements and Algebraic Quaternions (4원법과 유한요소를 이용한 유연체 동역학의 해석기법)

  • Lee, Dong-Hyun;Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2005
  • This paper deals with formulations of the energy equilibrium equation by an introduction of the algebraic description, quarternion, which meets conservations of system energy for the equation of motion. Then the equation is discretized to analyze the dynamits analysis of flexible multibody systems in such a way that the work done by the constrained force completely is eliminated. Meanwhile, Rodrigues parameters we used to express the finite rotation lot the proposed method. This method lot the initial essential step to a guarantee of developments of the 3D dynamical problem provides unconditionally stable conditions for the nonlinear problems through the numerical examples.

Probabilistic Service Life Evaluation for OPC Concrete under Carbonation Considering Cold Joint and Induced Stress Level (콜드조인트 및 재하 응력을 고려한 탄산화에 노출된 OPC 콘크리트의 확률론적 내구수명평가)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.45-52
    • /
    • 2019
  • Steel corrosion due to carbonation in RC (Reinforced Concrete) structures easily occurs in urban cities with high CO2 concentration. RC structures are always subjected to external loading with various boundary conditions. The induced stress level causes changes in diffusion of harmful ion like CO2. In this work, a quantification of carbonation progress with stress level is carried out and carbonation prediction is derived through the relations. Determining the design parameters like cover depth, CO2 diffusion coefficient, carbonatable materials, and exterior CO2 concentration as random variables, service lifes under carbonation with design parameter's variation are obtained through MCS(Monte Carlo Simulation). Additionally the service life with different stress level is derived and the results are compared with those from deterministic method. Cover depth and cement hydrates are evaluated to be very effective to resist carbonation, and the proposed method which can consider the effect of stress on service life can be applied to maintenance priority determination.

Design of kitchen cabinet using complex link mechanism (복합 링크기구를 이용한 주방 상부장 설계)

  • Geon-Hyeok Lim;Kibum Shim;Hoon Shim;Jiwon Jang;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • Kitchen cabinets are essential furniture for storing the kitchen tools, but their high installed location makes it difficult for users to access the upper of the cabinets. Therefore, in this paper, we propose a new type of kitchen cabinet that allows users to easily take out or store items by adding new height adjustment features while maintaining the function of the existing cabinet. For convenience and safety, an appropriate complex link mechanism is designed so that the selected floor, not the entire cabinet, can come down to a desired height with one operation. Moreover, the optimal descent path is set to prevent the floor tilting or interfloor interference during descent, and appropriate link shapes, lengths, and joint types are selected to implement it. FEA analysis is performed to ensure that the stretched complex linkage can support the load of the stored items and the feasibility of the height adjustable kitchen cabinet is verified through fabrication.

Numerical study on tunnel design for securing stability at connection between submerged floating tunnel and bored tunnel (수중터널 지반 접속부 안정성 확보를 위한 터널 설계에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel that allows tunnel segments to float underwater by buoyancy, and is being actively studied in recent years. When the submerged floating tunnel is connected to the ground, the tunnel and the bored tunnel inside the ground must be connected. There is risk that the stress will be concentrated at the connection between the two tunnels due to the different constraints and behavior of the two tunnels. Therefore, special design and construction methods should be applied to ensure the stability around the connection. However, previous studies on the stability at the connection site have not been sufficiently carried out, so study on the basic stage of the stability at connection site are necessary. In this study, numerical analysis simulating the connection between submerged floating tunnel and the bored tunnel confirmed that the shear strain concentration occurred in the ground around the connection, and it was analyzed that the structural factors can be handled during construction to have effects on the stability of the ground around the connection. Numerical results show that the risks from disproportionate displacements in the two tunnels can be mitigated through the construction of grouting material and joint design. Although the results from this study are qualitative results, it is expected that it will contribute to the determination of structural factors and risk areas that should be considered in the design of connections between the submerged floating tunnel and bored tunnel in the future studies.

A Study on Durability of Automotive Propeller Shaft by Fatigue and Vibration (피로 및 진동에 의한 자동차 추진축의 내구성 연구)

  • Cho, Jae-Ung;Kim, Sei-Hwan;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1495-1501
    • /
    • 2011
  • Fatigue life and vibration can be analyzed at automotive propeller shaft during driving in this study. The york part is shown with the maximum equivalent stress and displacement of $1.3177{\times}10^3$Pa and $3.6148{\times}10^{-4}$m. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and Sample history. There are the most frequency as 80% in case of 'SAE bracket and the least frequency as 5% in case of Sample history'. Maximum amplitude displacement is 0.00261m at 58 Hz at forced vibration. As the result of this study is applied by the propeller shaf, the prevention on fatigue damage and the durability are predicted.

Design of height adjustable hanger using 4-bar linkage (4절 링크기구를 이용한 높이 조절 행거 설계)

  • Seyun Park;Hyuneun Lee;Yongsu Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.525-530
    • /
    • 2023
  • Although double-stage hanger is used in many homes for its space utilization and ease of installation, it is inconvenient for users to take off clothes hung on the upper bar due to its high height. Therefore, this paper proposes a new type of double-stage hanger that allows users to easily hang or take out clothes hung on the upper bar while maintaining the function of the existing double-stage hanger. 4-bar link mechanism is applied so that the upper bar can come down to a convenient height with one operation. In addition, an appropriate link shape, length, and joint type are selected so that the height is adjusted three-dimensionally to prevent overlapping of clothes hanging on upper/lower bars. FEA analysis is performed to ensure that the presented hanger shape can support the load of clothes during height adjustment and the feasibility of the three-dimensional height adjustment hanger is verified through fabrication.