• 제목/요약/키워드: 조선해양

검색결과 1,221건 처리시간 0.025초

반복 충격이 유리섬유 강화 폴리우레탄 폼의 기계적 성능에 미치는 영향 (Effect of Repetitive Impacts on the Mechanical Behavior of Glass Fiber-reinforced Polyurethane Foam)

  • 김명성;김정현;김슬기;이제명
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.85-91
    • /
    • 2019
  • In a cryogenic storage structure, the insulation system is in an environment in which fluid impact loads occur throughout the lifetime of the structure. In this study, we investigated the effect of repetitive impact loading on the mechanical performance of glass fiber-reinforced polyurethane foam. The repeated impact loading test was conducted in accordance with the required impact energy and the required number of repetitive impacts. The impact behavior of glass fiber-reinforced polyurethane foam was analyzed in terms of stress and displacement. After the impact test, the specimen was subjected to a compression test to evaluate its mechanical performance. We analyzed the critical impact energy that affected mechanical performance. For the impact conditions that were tested, the compressive strength and elastic modulus of the polyurethane foam can be degraded significantly.

성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구 (Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid)

  • 이주한;김관우;백광준;구원철;김영규
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

장애물 회피에 페널티 보행 속도 알고리즘을 적용한 여객선 승객 탈출 시뮬레이션 (Advanced Evacuation Analysis for Passenger Ship Using Penalty Walking Velocity Algorithm for Obstacle Avoid)

  • 박광필;하솔;조윤옥;이규열
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 논문에서는 여객선의 승객 비상 탈출 시뮬레이션을 구현하였다. 승객의 행동에 미치는 요인 중 연령, 성별을 고려하여 승객 개인의 보행 속도에 반영하는 속도 기반 모델을 사용하였다. 승객들의 집단 이동을 구현하기 위해 플로킹 알고리즘을 적용하였다. 장애물과의 충돌 회피 및 승객 간의 위치가 겹치는 현상을 방지하기 위해 페널티 보행 속도를 도입하였다. 이 알고리즘을 이용하여 여객선의 승객 탈출 규정인 IMO (International Maritime Organization) MSC (Maritime Safety Committee) Circ.1238에서 정의한 11가지 시험 문제에 적용하였다. 시험 문제를 통해 승객의 위치가 겹치는 현상이 없이 시뮬레이션 되는 것을 확인하였다.

OpenFOAM을 이용한 EOM 기반 2차원 수치 파 생성에 관한 파라메트릭 연구 (A Parametric Study on EOM-based 2D Numerical Wave Generation using OpenFOAM)

  • 문성호;이성욱;백광준;권창섭
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.490-496
    • /
    • 2018
  • The consistency of the initially designed waves in the domain is essential for accurate calculation of the added resistance in waves through CFD. In particular, unwanted reflected waves at domain boundaries can cause incorrect numerical solutions due to the superposition with initially designed waves. Euler Overlay Method(EOM) is one of the methods for reducing wave reflections by adding an additional source term to momentum and phase conservation equations, respectively. In this study, we apply the Euler Overlay Method(EOM) to the open-source CFD library, OpenFOAM(R), to simulate the accurate free-surface waves in the domain and the parametric study is performed for efficient implementation of Euler Overlay Method(EOM). Considering that the damping efficiency depends on the selection of the overlay parameter in the added source terms, the size of overlay zone and the wave steepness, the influences of these factors are tested through the wave elevation measured at constant time intervals in the 2D numerical wave tank. Through this process, guidelines for selection of optimal overlay parameter and overlay zone size that can be applied according to the scaling law are finally presented.

HC-DSSE 조합 파단 변형률 정식화에 기반한 선박해양 구조물용 강재의 연성 파단 예측 (Ductile Fracture of a Marine Structural Steel based on HC-DSSE Combined Fracture Strain Formulation)

  • 박성주;이강수;부락 잔 체릭;김영훈;정준모
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.82-93
    • /
    • 2019
  • In this paper, the ductile fracture criteria for a marine structural steel (EH36) are presented and validated. The theoretical background of the recently developed Hosford-Coulomb (HC) fracture strain model and the DSSE fracture strain model which was developed to apply to the shell elements is described. In order to accurately estimate the flow stress in the large strain range up to the fracture, the material constants for the combined Swift-Voce constitutive equation were derived by the numerical analyses of the smooth and notched specimens made from the EH36 steel. As a result of applying the Swift-Voce flow stress to the other notched specimen model, a very accurate load - displacement curve could be derived. The material constants of the HC fracture strain and DSSE fracture strain models were independently calibrated based on the numerical analyses for the smooth and notch specimen tests. The user subroutine (VUMAT of Abaqus) was developed to verify the accuracy of the combined HC-DSSE fracture strain model. An asymmetric notch specimen was used as verification model. It was confirmed that the fracture of the asymmetric specimen can be accurately predicted when a very small solid elements are used together with the HC fracture strain model. On the other hand, the combined HC-DSSE fracture strain model can predict accurately the fracture of shell element model while the shell element size effect becomes less sensitive.

다기능 조파기의 조파 운동과 발생 파형 (Wave and Wave Board Motion of Hybrid Wave Maker)

  • 김효철;오정근;류재문;이신형;김재헌
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.339-347
    • /
    • 2021
  • Piston type wave makers or flap type wave makers are usually adopted as a wave maker which disturbing the fluid domain with sinusoidal motion. Recently hybrid wave maker which could be operated as not only piston type and/or flap type but also swing type wave maker have been devised by utilizing the link mechanism. The wave board of hybrid wave maker has been devised to be independently controlled by the horizontal actuators on upper and lower end of the wave board. The wave board could operate as a flap type wave board when the lower hinge is in a stationary condition and the upper hinge is operated with sinusoidal motion. On the contrary, the swing type wave board could be obtained by the lower hinge is activated and the upper hinge is in a stationary condition. When both end of the wave board is activated in a synchronized condition, the wave board motion become piston motion. In addition the hybrid wave maker could enhance the piston motion with flap motion or swing motion by selecting control parameters. Various wave board motion of hybrid wave maker and relevant wave form have measured on the wave board and departed location. It is appeared that the novel hybrid wave maker could be utilized for the improvement of wave qualities in experiments.

소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류 (Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus)

  • 유승열;장준교;전민성;이재철;강동훈;이순섭
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.

부분 침수 조건에서 작동하는 프로펠러의 공기유입과 축계 기진력에 대한 실험적 연구 (Experimental Study on Ventilation and Shaft Excitation Force of a Propeller in Partially Submerged Condition)

  • 하정수;서정화;박격포;박종열;이신형;유재훈;박수영
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Through a series of bollard pull tests of a propeller in partially submerged condition, thrust, torque, and shaft excitation force of a conventional propeller model were measured using a six-component load cell. By variation of the Weber number and Reynolds number, a consistent towing tank model test condition was derived. The effects of propeller immersion depth on the ventilation behavior and change of force and moment acting onto the propeller shaft were investigated. The decrease in thrust owing to the inception of ventilation was confirmed, and a large degree of dispersion of the thrust and torque coefficients were also observed in the transition region where the blade tip was under the water surface. The shaft excitation force was derived from the force and moment onto the propeller shaft.

176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석 (Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier)

  • 유광열;김문찬;신용진;신이록;김현웅
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.