• Title/Summary/Keyword: 조류대증식

Search Result 25, Processing Time 0.022 seconds

Seasonal distribution of phytoplankton and environmental factors in the offshore waters of Dokdo: Comparison between 2018 and 2019 (독도 연안 식물플랑크톤의 계절적 분포 특성과 환경요인: 2018년과 2019년 비교)

  • Lee, Minji;Kim, Yun-Bae;Kang, Jung Hoon;Park, Chan Hong;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.47-60
    • /
    • 2020
  • To assess the characteristics of phytoplankton community structures related to environmental factors, seasonal surveys were conducted in the vicinity of Dokdo. In 2019, phytoplankton of four phyla and 69 species were observed. During winter, unidentified nanoflagellates dominated, with an average of 3.19×104 cells L-1. In spring, unidentified nanoflagellates occupied about 50% of the composition and a variety of dinoflagellates appeared. The summer phytoplankton population showed very low abundance. In autumn, various species of Chaetoceros appeared, along with diatoms, such as Bacteriastrum spp., Guinardia striata, and Pseudo-nitzschia spp. In addition, tropical species Amphisolenia sp. and Ornithocercus sp. were observed in both 2018 and 2019. The diversity was high in the summer of 2018 and the winter of 2019 and the characteristics of each index varied. Cluster analysis was divided into four groups according to species and population characteristics regardless of the season. The stratification of spring was particularly weak. In the autumn of 2018, the water mass was stabilized in the same way as in the summer, which is considered a suitable condition for phytoplankton growth. However, in 2019, the water masses were mixed, resulting in a low population. In a phytoplankton comparison, the dominant group showed seasonal differences, except for summer when the population was low, and the difference was most pronounced in autumn. Therefore, the waters surrounding Dokdo have different environmental and ecological characteristics from the East Sea, but the seasonal characteristics of each year are considered to be different depending on the topography, various currents, the island effect, and other factors.

Eutrophication and Freshwater Red-tide Algae on Early Impoundment Stage of Jeolgol Reservoir in the Paikryeong Island, West Sea of South Korea (백령도 절골저수지의 부영양화와 담수적조)

  • Lee, Heung-Soo;Hur, Jin;Park, Jae-Chung;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.271-283
    • /
    • 2006
  • A systematic water quality survey was conducted in August, 2005 for a drinking water supply reservoir (the Jeolgol reseuoir located in an island), which is at an early stage of impoundment, to investigate the causes of water color deterioration of the reservoir and the clogging of filter beds of a water treatment plant. The reservoir shape was simple and its average depth was 5.5 m, increasing from upreservoir toward the downreservoir end near the dam. Dissolved oxygen (DO) and chloropllyll-a (chi-a) showed a large variation while water temperature had a smaller range. Transparency ranged from 0.6 to 0.9 m (average 0.7 m). The average value of turbidity was 9.3 NTU, ranging from 8.0 ${\sim}$ 12.1 NTU. The transparency and the turbidity appear to be affected by a combination of biological and non-biological factors. The poor transparency was explained by an increase of inorganic colloids and algal bloom in the reservoir. The blockage of the filter bed was attributed to the oversupply of phytoplanktons from the reservoir. The range and the average concentration of chi-a within the reservoir were 31.6 ${\sim}$ 258.9 ${\mu}g\;L^{-1}$, 123.6 ${\mu}g\;L^{-1}$ for the upper layer, and 17.0 ${\sim}$ 37.4 ${\mu}g\;L^{-1}$, 26.5 ${\mu}g\;L^{-1}$ for the bottom layer, respectively. A predominant species contributing the algal bloom was Dinophyceae, Peridinium bipes f. occultatum. The distribution of Peridinium spp. was correlated with chi-a concentrations. The standing crop of phytoplankton was highest in the upreservoir with $8.5\;{\times}\;103\;cells\;mL^{-1}$ and it decreased toward the downresevoir. Synedra of Bacillariophyceae and Microcystis aeruginosa of Cyanophyceae appeared to contribute to the algal bloom, although they are not dominated. It is mostly likely that sloped farmlands located in the watershed of the reservoir caused water quality problems because they may contain a significant amount of the nutrients originated from fertilizers. In addition, the aerators installed in the reservoir and a shortage of the inflowing water may be related to the poor water quality. A long-term monitoring and an integrated management plan for the water quality of the watersheds and the reservoir may be required to improve the water quality of the reservoir.

Assessment of Ecosystem Health during the Freshwater Discharge in the Youngsan River Estuary (영산강 하구둑 담수 방류에 따른 하구 건강성 평가)

  • Lee, Dahye;Park, Gunwoo;Lee, Changhee;Shin, Yongsik
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.46-56
    • /
    • 2017
  • The Youngsan River estuary was physically changed by the construction of a sea embankment at near the mouth of estuary. Weirs were also constructed recently in the freshwater zone and it was reported that algal blooms occur more frequently. The freshwater introduced into saltwater zone from sluice gates of the embankment affects water quality but it has not been addressed that how the freshwater inputs influence the health of marine ecosystem. In this study, we used the data of water properties and phytoplankton communities collected at three stations for 4 days including before the freshwater discharge, during the discharge and after 1 and 2 days of discharge events. WQI(water quality index), TRIX (trophic status index) and P-IBI(phytoplankton index of biotic integrity) were used to evaluate the ecosystem health and long-term data were also utilized to determine the criteria for P-IBI. The results showed that grades of the ecosystem health assessed by the indices were low at the station near the gates and increased as downstream. However, the temporal pattern of grades was different depending on methods. Grades of WQI and TRIX decreased during the discharge and restored after the discharge whereas the grades of P-IBI decreased slightly even after the discharge. This suggests that P-IBI is more applicable to estuarine systems where experience extreme change of water properties than WQI and TRIX since P-IBI includes phytoplankton that can respond quickly to the change.

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea (인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.101-112
    • /
    • 2007
  • In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.

Ecological Risk of Alien Apple Snails Used in Environmentally-friendly Agriculture and the Urgent Need for Its Risk Management in Korea (친환경농법용 외래 왕우렁이의 생태위해성 및 위해성 관리의 필요성)

  • Bang, Sang-Weon;Cho, Mi-Kyeoung
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.129-137
    • /
    • 2008
  • Alien apple snails (Pomacea canaliculata, Pomacea insularus) used in environmentally-friendly agriculture are different from indigenous snails found in Korea. Due to high herbicidal effects and cost-effectiveness, the number of farmers using the snails has been growing every year since 2000. Moreover, in 2008, because of the outbreaks of avian influenza throughout the country from March to May, 2008, central and local governments recommended the use of alien apple snails in agriculture as an alternative to the ducks-oriented environmentally-friendly agriculture. Therefore, it is expected that the use of alien apple snails in agriculture should be expanded in a near future. Since alien apple snails lay eggs with 95.8% of eclosion rate, they are considered to be potential pests unlike indigenous snails. In addition, Japan, Taiwan and most of the southeast Asian countries had already experienced severe ecological and agricultural damage by the alien apple snails. Subsequently, International Union for Conservation of Nature and Natural Resources (IUCN) designated P. canaliculata as one of "the 100 of the world's worst invasive alien species". It seems highly likely that the alien apple snails in Korea pose a potential threat to conservation of ecosystem and biodiversity since the snails were either found or invaded into the natural environments in some regions of Gangwon-Do and southern parts of Korean Peninsula. However, just recently, agricultural authorities and farmers using alien apple snails in agriculture opposed a proposition of designating the alien apple snails as an ecosystem-disturbing animal described by the Wildlife Protection Act. This is because there has been no concrete evidence of the ecological risk imposed by the alien snails up to now in Korea. Subsequently, in this paper, we analysed the ecological and agricultural risks imposed by the alien snails from the studies done in domestic and abroad. In addition, we proposed an urgent need and reasoning for ecological risk management of the alien snails at the national level as well as using the snails in agriculture.