• Title/Summary/Keyword: 조기 분사

Search Result 18, Processing Time 0.018 seconds

A Study on Expansion of Lean Limit for Heavy-Duty DI Engine with Compressed Natural Gas (대형 직접분사식 CNG기관의 희박한계 확장에 관한 연구)

  • Quoc, Tran Dang;Lee, Kwang-Ju;Lee, Jong-Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.735-740
    • /
    • 2011
  • 본 연구에서는 직접분사식 CNG기관의 희박한계를 보다 확장하여 고효율 및 저배기 공해를 실현시키고자 실린더 내에 고압의 천연가스를 직접분사함과 동시에 흡입과정 중 흡기관 내에 소량의 저압천연가스를 보조분사하는 경우의 희박한계 확장 및 제반특성에 대해 검토하였다. 그 결과, 흡기보조분사가 없을 경우 희박한계가 ${\lambda}$ = 1.4 까지였으나, 흡기보조분사율이 5~15% 정도에서는 희박한계가 ${\lambda}$ = 1.5 까지 확장되었다. 이는 흡기보조분사에 따른 혼합기의 혼합율 향상에 기인한 것으로 해석하였다. 연소기간은 줄어들었지만, 흡기보조분사의 효과는 주연소기간에서 조기연소기간보다 강하게 나타났다.

액체 로켓용 2중 충돌(F-O-O-F)형 분사기의 미립화 특성에 관한 연구

  • 권기철;조기순;오제하;강신재
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.2-2
    • /
    • 1999
  • 본 연구에서는 액체 로켓용 추진제 분사기로 많이 활용되는 충돌형 분사기중에서 2중 충돌(F-O-O-F)형 분사기에 대한 미립화 특성을 파악하였다. 액적의 크기를 측정하기 위하여 위상/도플러 입자분석기를 사용하였으며, 모의 추진제로 물을 사용하였다. 모의 추진제의 운동량비와 압력 강하량 변화에 따른 2중 충돌(F-O-O-F)형 분사기의 미립화 특성과 크기분포에 대하여 고찰하였다. 분사기 면으로부터 100mm 떨어진 단면에서 산화제/연료의 운동량비가 MR=1.19에서 MR=6.48까지 증가함에 따라 액적크기(SMD)는 감소하였으며, 액적크기(SMD)가 운동량비(MR)에 대하여 SMD= 193.480+15.687MR-5.036M$R^2$+0.415MR$^3$와 같은 관계식에 근사되었다 또한, 연료와 산화제의 압력강하량이 증가할수록 액적크기(SMD)가 감소하였다. 충돌 분무유동장의 액적크기 분포는 Rosin-Rammler 분포함수와 Upper-limit분포함수 모두에 대하여 잘 일치하고 있다. 본 연구의 결과는 액체 로켓용 충돌형 분사기의 초기 설계단계에서 유용하게 사용될 수 있을 것이다.

  • PDF

Development of Injector Controller (인젝터 컨트롤러의 개발)

  • Cho, Ki-Ryang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.279-284
    • /
    • 2013
  • In this paper, to evaluate the performance of solenoidal typed injector, research and development had been performed on injector controller in order to respond to various performance tests, which is not only economical but easy extensible on its channels. The developed controller based on embedded system is able to precisely control the injection timing and quantity by high-pressured from the injector. Also, it is able to performance evaluation by measuring the electrical characteristics of solenoid. Additionally, it is enable precision timing control of light source and high speed camera as it is able to precisely photograph the timely spray pattern of injector.

Effect of Early Injection Strategy on the Combustion and Emission Characteristics of the Common-rail DI Diesel Engine (코먼레일 직접분사식 디젤 엔진의 조기 분사가 연소 및 배기특성에 미치는 영향)

  • Yoon, Seung-Hyun;Kim, Myung-Yoon;Kim, Dae-Sik;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.26-31
    • /
    • 2006
  • An experimental investigation of an early injection strategy was conducted on a small single cylinder common-rail DI diesel engine to reduce the oxides of nitrogen($NO_x$) emission. The main objectives of this study were to investigate the emissions, performance and combustion characteristics in a diesel engine with early and two-stage injections. The two- stage injection was conducted to reduce the wall-wetting of early injected fuels on the cylinder wall or to promote the ignition of premixed charge. The engine test was performed at conditions of 1500rpm, injection timing ranging from TDC to BTDC $80^{\circ}$. The experimental results show that $NO_x$ emissions were decreased in both cases of early injection and two stage injection compared to the conventional diesel combustion by the near TDC injection. However, soot and products of incomplete products (i.e. HC and CO) are slightly increased. Also, the second injection near TDC promoted the ignition of premixed fuel, therefore, IMEP was increased.

A Study on the Diesel DI-HCCI Combustion Characteristics using 2-stage Injection Method (2단 분사 방식을 적용한 디젤 DI-HCCI 연소특성에 관한 연구)

  • Chung, Jae-Woo;Kang, Jung-Ho;Kim, Byoung-Soo;Kang, Woo;Kim, Hyun-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.66-73
    • /
    • 2004
  • In this study, combustion characteristics and various performances of a Diesel fuel DI-HCCI engine using 2-stage injection method were investigated. From these researches, application ability of 2-stage injection strategy to a DI-HCCI engine was confirmed and improvement methods of performances were considered. As the results, Using 2-stage injection method, without change of engine specifications and loss of IMEP, exhaust of NOx and Smoke emissions could be reduced to about 1/3 (at 1400rpm, IMEP 6bar) compared to conventional Diesel combustion.

An Experimental Study on the Combustion and Emission Characteristics of the Early Injection in a Gasoline Direct Injection Engine Using Controlled Auto Ignition Combustion Method (CAI 연소 방법을 이용한 직분식 가솔린 엔진내의 조기 분사시 연소 및 배기 특성에 관한 실험적 연구)

  • Choi Young-Jong;Lee Ki-Hyung;Lee Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.457-464
    • /
    • 2006
  • Controlled auto ignition (CAI) combustion, also known as HCCI (homogeneous charge compression ignition), offers the potential to simultaneously improve fuel economy and reduce emission. CAI-combustion was achieved in a single cylinder gasoline DI engine, with a cylinder running in a CAI mode. Standard components were used the camshafts which had been modified in order to restrict the gas exchange process. The effects of air-fuel ratio, residual EGR rate and injection timing such as early injection and late injection on the attainable CAI combustion region were investigated. The effect that injection timings on factor such as start of combustion, combustion duration and heat release rate was also investigated. From results early injection caused the mixture to ignite earlier and burn more quickly due to the exothermic reaction during the recompression and gave rise to good mixing of the fuel-air.

Effects of Injection Strategies on the Partial Premixed Charge Combustion and Emission Characteristics in a Diesel Engine (디젤엔진의 부분 예혼합 연소 및 배기 특성에 대한 분사전략의 영향)

  • Kim, Jaewoong;Kim, Yungjin;Park, Sangki;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.83-88
    • /
    • 2013
  • Recently, PCCI (premixed charge compression ignition) combustion is studied to reduce both NOx and PM because of homogeneous mixture formation and lower combustion temperature. It has also merit of increasing thermal efficiency owing to better air-fuel mixure. However, it is well known that PCCI combustion has a weakness in fuel economy because PCCI combustion tends to start before TDC. Therefore, it is necessary to find an optimal conditions for PCCI combustion which maintains reduction of NOx, PM and increase of thermal efficiency. In this study, pPCCI combustion was realized by adding early injection strategy to a conventional diesel engine. In addition, the characteristics of pPCCI combustion was analized by comparing conventional diesel injection strategy. The results show that NOx and PM per power in pPCCI combution were reduced compared to a conventional diesel combustion.

The Experimental Study of Early Fuel Evaporation Characteristics Gasoline Engine Using Glow-Plug (Glow-Plug를 이용한 가솔린 연료의 조기증발 특성 실험 연구)

  • 문영호;김진구;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • In order to reduce hydrocarbon emissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to reduce direct engine out hydrocarbon emissions, during cold starting and warm up process. Tjerefore many researchers have been attracted to develop an early fuel evaporator (EFE) by introducing a ceramic heater for a solution of engine out hydrocarbon emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has nat been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug for EFE.

  • PDF

An Experimental Study on the Extend of the Operating Region and Emission Characteristics Through Ohe Stratined Combustion Using Controlled Auto-Ignition Method (CAI 연소 방법을 이용한 성층 연소를 통한 운전 영역 확대, 연소 및 배기 특성에 관한 실험적 연구)

  • Jeoung Hae-Young;Lee Ki-Hyung;Lee Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.465-471
    • /
    • 2006
  • Controlled auto-ignition(CAI) combustion, offers the potential to improve fuel economy and reduce emission simultaneously. In this study, CAI-combustion was achieved in a single cylinder gasoline DI engine with modified camshafts in order to restrict the gas exchange process. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing such as early injection and late injection on the attainable CAI combustion region. The effect of injection timings on combustion characteristic such as start of combustion, combustion duration and heat release rate was also investigated. From the result early injection causes the mixture to ignite earlier and burn more quickly due to the exothermic reaction during the recompression and gives rise to good mixing of the fuel/air. On the other hand, late injection extended the operation region more than early injection but the emissions of HC and NOx were more or less increased than early injection.