• Title/Summary/Keyword: 조건성 연못

Search Result 13, Processing Time 0.032 seconds

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF

Nutrient Removal Efficiencies in Marsh- and Pond- type wetland Microcosms (실험실 조건에서 소택지, 연못형 습지의 영양염류 제거효율 평가)

  • Song, Keunyea;Kang, Hojeon0g
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.43-50
    • /
    • 2005
  • Wetlands can transform or remove pollutants from water body, such as nitrogen, phosphate, and organics. Many researches were conducted in relation to uptake process by aquatic plants in wetlands. However, water purification processes in wetlands are the results of physical, chemical and biological, especially microbiological reactions. As such, understanding on microbial processes is of great importance. In this study, we used pondor marsh-type wetland microcosms for investigating the water purification capacity and microbial functions, namely, extracellular enzyme activities, nitrification and denitrification. In a pond system, removal efficiencies of $NO_3{^-}$ and $PO{_4}^{3-}$ were 96% and 100 % respectively, while those in a marsh system were 94%, 100% respectively. These high removal efficiencies appeared to be caused by high adsorption ability to soils and microbial functions in wetland.

  • PDF

Methane Fermentation of Pit in Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 Pit 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • An integrated wastewater treatment pond system is developed for treatment and recycling of excreta from dairy cattle. It is composed of three ponds in series. A pit with a capacity of $10m^3$, 2-day hydraulic residence time, and overflow velocity of $1.5m^3m^{-2}day^{-1}$ is located internally in primary pond. It is designed for efficient sludge sedimentation and effective methane fermentation. It receives $5m^3/day$ of diluted cattle excreta by the water used for clearing stalls. A submerged gays collector for the recovery of methane is installed on the top of the pit. The average BOD_5 concentration of influent is 398.7mg/l. That of the effluent from primary pond is 49.2mg/l. About 88% of BOD_5 are removed in primary pond. It is assumed that about 60% of the influent BOD_5 is removed in the pit and that almost all of the carbon of the removed BOD_5 in the pit is converted to methane and carbon dioxide. Methane fermentation of the pit is well established at $16^{\circ}C$. This phenomena results from temperature stability, complete anaerobic condition, and neutral pH of the pit. Gas from the collector is almost 90% methane, less than 9% nitrogen, and less than 1% carbon dioxide. Thus a purified methane is produced, which can be used as energy source.

  • PDF

Treatment Level of a Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 폐수처리수준)

  • Yang, Hong-Mo;Rhee, Chong-Ouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • A model of pond system is developed for treatment and recycling of excreta from twenty-five adult dairy cattle. It is composed of wastewater treatment ponds and small fish ponds. Those are three facultative ponds in series; primary-secondary-tertiary pond and these are designed to rear carps without feeding. A pit is constructed at the bottom of primary pond for efficient sludge sedimentation and effective methane fermentation. It is contrived to block into it the penetration of oxygen dissolved in the upper layer of pond water. The excreta from the cattle housed in stalls are diluted by water used for clearing them. The washed excreta flow into the pit. The average yearly $BOD_5$ concentration of influent is 398.7mg/l. That of the effluent from primary, secondary and tertiary pond of the system is 49.18, 27.9, and 19.8.mg/l respectively. Approximate 88, 93, and 95 % of BOD5 are removed in each pond. The mean yearly SS concentration of influent is 360.5 mg/l That of the effluent from each pond is 53.4, 45.7, and32.7mg/l respectively. Approximate 86, 88, and 91% of SS are removed in each pond. The $BOD_5$ concentration of secondary and tertiary pond can satisfy 30mg/l secondary treatment standard. The SS concentration of effluent from tertiary pond, however, is slightly greater than the standard, which results from activities of carps growing in the pond. The average yearly total nitrogen concentration of influent is 206.8mg/l and that of the effluent from each pond is 48.6, 30.8, and 21.0mg/l respectively. Approximate 74, 88, and 90% of total nitrogen are removed in each pond. The mean yearly total phosphorous concentration of influent is 20.7mg/l and that of the effluent from each pond is 5.3, 3.2, and 2.1mg/l respectively. Approximate 97, 98, and 99% of total phosphorous are removed in each pond. The high removal of nitrogen and phosphorous results from active growth of algae in the upper layer of pond water. Important pond design parameters for southern part of Korea -- areal loading of BOD5, liquid depth, hydraulic detention time, free board, and pond arrangement -- are taken up.

  • PDF

The application of Photovoltaic System using reservoir water (저수지 수면을 활용한 태양광발전 시스템 적용에 관한 연구)

  • Choi, Hyungcheol;Lee, SungHun;Jang, Jeongho;Lee, Eunchun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.102.2-102.2
    • /
    • 2010
  • 저수지 수면을 이용한 태양광발전 시스템은 저수지, 연못 등의 유휴수면에 부유체를 이용하여 태양광발전 시스템을 수면에 설치하는 발전방식이다. 수면의 환경조건은 지상조건에 비해 장애물이 없고 모듈의 온도가 낮기 때문에 일조량 및 발전효율의 증가 등이 예상되고 있다. 지상 태양광 발전은 농지 또는 임야를 개발하는 과정에서 산림훼손 등을 유발하는 단점이 있으나, 수면태양광 발전은 유효 수면을 적극 활용함으로 국토가 협소한 우리나라에 매우 적합한 발전 방식이라 할 수 있다. 본 논문은 한국수자원공사에서 관리하고 있는 주암 다목적댐에 수면태양광 실증플랜트를 설치한 사례로 설계 및 시공 방법에 대하여 기술하고자 한다.

  • PDF

A Basic Study on the Euryale ferox Salisbury for Introduction in Garden Pond - Focusing on the Flora and Vegetation - (정원내 가시연꽃(Euryale ferox Salisbury) 도입을 위한 기초연구 - 식물상과 식생을 중심으로 -)

  • Lee, Suk-Woo;Rho, Jae-Hyun;Oh, Hyun-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.83-96
    • /
    • 2016
  • Through the research and analysis on the vegetation environment, flora of habitats through documentary and field studies over 14 habitats of Euryale ferox Salisbury within Jeollabukdo, with the objective of acquiring the basic data for forming an environment based on plantation of reservoirs that are composed with Euryale ferox, the following results were obtained. 1. The entire flora of the 14 habitats appeared to be 79 families, 211 genus, 298 species, two subspecies, 30 varieties and six forma, thus, a total of 336 taxa was confirmed. Among these, emergent water plants appeared to compose 17 taxa, floating-leaved plants to compose seven taxa including Euryale ferox floating plants to compose five taxa and submerged water plants to compose two taxa. As a result of analyzing the similarity only over the water plants. The lowest similarity rate appeared between Gamdong Reservoir and Aedang Reservoir, as the similarity rate between the two regions appeared to be 0% as a result of the analysis. Floating-leaved plants, lotuses and caltrops, appeared to be equally inhabiting in Hanseongji at Jeongeup and Seoknam Reservoir at Gochang, which showed the highest similarity rate, in addition to Euryale ferox. 2. When examining the appearance frequency of aquatic plants per growth type, Actinostemma lobatum and Phragmites communis, in addition to Euryale ferox each appeared 11 times, showing a high frequency of 78.6% and Trapa japonica, which is a floating-leaved water plant, appeared ten times(71.4%) and Zizania latifolia appeared eight times(57.1%). In addition, the appearance rate appeared to be high in the order of Persicaria thunbergii, Leersia sayanuka, Ceratophyllum demersum, Echinochloa crusgalli var. oryzicola, Scirpus maritimus, and Nelumbo nucifera. 3. The rare plants discovered in the Euryale ferox habitats pursuant to the IUCN evaluation standards was confirmed to be composed of five taxa, with three taxa including the least concerned species(LC), Melothria japonica at Yanggok Reservoir, Hydrocharis dubia at Myeongdeokji and Ottelia alismoides at Daewi Reservoir, in addition to vulnerable species(VU), Utricularia vulgaris at Sangpyeong Reservoir, along with Euryale ferox. 4. Most of the group or community types of the natural habitats of Euryale ferox appeared to be the Euryale ferix community' and the Daewi Reservoir of Gunsan was defined as caltrop + Euryale ferox + Nymphoides indica community. The green coverage ratio of Euryale ferox per natural habitats showed a considerably huge deviation from 0.03 to 36.50 and as the average green coverage ratio was appropriated as 9.8, it can be considered that maintaining the green coverage ratio of Euryale ferox in a 10% level would be advisable when forming a reservoir with Euryale ferox as the key composition species. 5. The vegetation community nearby the natural habitats of Euryale ferox per research subject area appeared to be composed of three Leersia japonica communities, two communities each for Zizania latifolia community and Trapa japonica community and one community each for Nelumbo nucifera community, Nymphoides peltata + Typha orientalis community, Trapa japonica + Nelumbo nucifera community, Hydrocharis dubia community, Leersia japnica + Paspalum distichum var. indutum community and Euryale ferox + Trapa japonica community, showing a slight difference depending on the location conditions of each reservoir. Thus, this result may be suggested as a guideline to apply when allocating the vegetation ratio and the types of floating-leaved plants upon planting plants in reservoirs with Euryale ferox as the main companion species.

Fouling Control Technique of Membrane Using Simultaneously Washing Process (동시세정방식을 이용한 막의 fouling 억제기술)

  • Choi, I-Song;Son, Chang-Sun;Kim, Sung-Yoon;Lim, Byung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1637-1641
    • /
    • 2009
  • 본 연구는 막공정을 이용하는 수처리기술에 있어서 최대 난점 중의 하나인 fouling 현상을 억제하기 위하여 여과방향의 반대방향에서 여과수를 지속적으로 분사하여 줌으로써 여과와 세정이 동시에 일어나는 동시세정방식을 평가하기 위한 것이다. 실험은 성균관대학교 환경플랜트 내에 pilot 실험지를 조성하여 실시하였으며, 실험원수는 오수처리방류수를 저류하는 연못수와 오수원수를 혼합하여 농도를 조절한 후에 저농도와 고농도 조건에서 실험을 실시하였다. 저농도 조건(SS 10$\sim$20 mg/L)에서는 연못의 HRT를 고려하여 일일 5시간 씩 8일간 가동하였고, 고농도 조건(SS 200 mg/L 이상)에서는 8시간씩 가동하였다. 저농도의 경우에는 가동기간 중 배수가 일어나지 않았고, 일일 운전 종료 후 유지관리를 위한 강제배수만 실시하였다. 고농도에서는 초기에 배수가 짧은 term으로 자주 일어났지만, 20분 이상의 비교적 긴 여과지속시간을 유지하였고 유입수 농도가 낮아지면서 배수타임이 점점 늘어나는 경향을 보였다. 이러한 결과는 동시세정방식에 의한 여과기술에 있어 유입수 농도가 fouling 발생빈도에 크게 영향을 미친다는 것을 의미하며, $5\;{\mu}m$의 미세막에서도 고농도 운전이 가능하다는 사실을 보여준다. 동시세정방식은 Rum Filter의 fouling을 억제하고 지속적인 운전을 가능하게 해주는 핵심기술이다. 세정 시 세정압력설정은 매우 중요한 운전인자 중 하나인데, 세정압력이 너무 클 경우에는 소요되는 동력이 많아져 효율적인 설계 및 운전에 장애요인이 될 수 있고, 너무 낮을 경우에는 세정이 제대로 되지 않고 여과막 내부와 외부의 압력차를 크게 가져와 배수타임이 빨라지는 결과를 초래한다. 따라서 적절한 세정압력을 파악하고 설정하기 위하여 세정압력을 변화시켜가면서 이에 따른 차압의 변화를 관측하여 보았다. 여과막의 공극과 세정압력에 변화를 주면서 실험을 한 결과, 세정압력이 커지면 여과막에 작용하는 부하가 약간 증가하는 것으로 나타났지만, 그 차이가 $0.02\;kg_f/cm^2$으로 나타나, $4.0\;kg_f/cm^2$ 이상의 세정압력에서 적용이 가능한 것으로 나타났다. 또한, 유입유량을 설정하기 위하여 $4.5\;kg_f/cm^2$의 세정압력을 유지한 상태로 유입유량을 점진적으로 증가시키면서 압력의 변화를 관측하였다. $5\;{\mu}m$에서는 180 LPM 및 200 LPM에서, $8\;{\mu}m$에서는 200 LPM에서 자체적으로 설정한 배수차압 상승분인 $0.1\;kg_f/cm^2$를 초과한 것으로 나타났고, $10\;{\mu}m$ 이상에서는 모두 200 LPM이상 처리해도 배수압력에 걸리지 않는 것으로 나타났다. 이러한 결과는 현재 본 시스템에 적용하고 있는 유입유량 기준치를 2배 이상 상회하는 결과로서 추가적인 실험을 통하여 기존 여과기술보다 여과지속시간이길고, 여과 flux가 높은 기술을 개발할 수 있을 것으로 판단된다.

  • PDF

Specific Growth Rates of Microalgae in Different Types of Model Photobioreactors (모형 배양조 형태에 따른 단세포 조류의 비증식속도)

  • KWAK Jung-Ki;KIM Hyun-Ju;LEE Ji-Hyun;SHIN Ga-Hee;CHO Man-Gi;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.477-482
    • /
    • 1998
  • In the aquaculture industry, a photobioreactor (Pbr) with high productivity is a prerequisite for mass production of Chlorella sp., a feeding fry for Rotifer (Brachinous plicatilis). To enhance the productivity of Chlorella sp., model Pbrs such as Cylinder type, Spherical surface type, Half-spherical surface type, Plate type, Raceway pond type and Water-wheel type Pbr with different values of surface area exposed to light/culture volume (S/V) were manufactured, and the maximum specific growth rate (${\mu}_{max}$) and productivity of Chlorella vulgaris 211-11b at $25^{\circ}C$, pH 7.0 and 12,000 lux were compared each other. The ${\mu}_{max}$ and productivity were not proportional to S/V. Among the 6 model Pbrs, Half-spherical surface type Pbr showed the highest ${\mu}_{max}$ and productivity as 2.206 ($day^{-1}$) and 0.247($g^{{\ell}-1}day^{-1}$).

  • PDF

Current Conditions of Habitat for Rana catesbeiana and Trachemys scripta elegans Imported to Jeju-do, Including Proposed Management Plans (제주도에 이입된 황소개구리(Rana catesbeiana)와 붉은귀거북(Trachemys scripta elegans)의 서식실태 및 관리방안)

  • Oh, Hong-Shik;Hong, Chang-Eui
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • This study was conducted to determine the geographical distribution and habitat for Rana catesbeiana and Trachemys scripta elegans in order to obtain the current basic data on biota needed for establishing a database on non-indigenous species(NIS) in Jeju-do and to develop management plans applicable to Jeju, starting from March 2005 until May 2006. As a result of an inspection, it was found that the habitat for R. catesbeiana in Jeju includes Hankyeong-myeon, Daejeong-eup, and Ahndeok-myeon. These areas are all located on the western side of Jeju-do, and considered to have favorable conditions for R. catesbeiana to inhabit. Thus, it is unlikely that the population of R. catesbeiana will possibly decrease; what's worse, there exists even a risk that it could not only expand to other regions but also do damage to the population of native insecta, fishes, amphibians and reptiles, so this terrible species ought to be exterminated. More than 92 individuals of T. scripta elegans species were found to inhabit in 15 ponds around Jeju Island. T. scripta elegans. as the topmost predator, could destruct the pond ecosystem, and also cause a problem of water pollution due to its excrement. Counter-measures against T. scripta elegans could include publicity activities encouraging self-control of the release of captive T. scripta elegans, extermination plans using its ecological habits, and sign-posting publicizing its hazard to healthy ecosystem at the areas with high population density of T. scripta elegans or at its habitats with high foot traffic, together with the continuous management of NIS(none-indigenous species).

Optimal Conditions for Treatment of Swine Wastewater using Rhodopseudomonas palustris KK14 (Rhodopseudomonas palustris KK14를 이용한 돈분폐수처리의 최적조건 검토)

  • Kim, Han-Soo;Lee, Tae-Kyung;Kim, Hyuk-Il;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.295-302
    • /
    • 1994
  • For the development of biological wastewater treatment process using photosynthetic bacteria (PSB), photosynthetic sludge process consisted of anaerobic digestion and PSB reactor were designed for the treatment of swine wastewater and the optimal operating conditions in flask-scale were examined. Photosynthetic bacteria from soil, pond, rice field, ditch etc. were isolated in synthetic medium containing high amount of organic acids and finally isolated one strain KK14 which showed the most degradating ability of organic acids was selected for the treatment of swine wastewater. It was identified as Rhodopseudomonas palustris. In the anaerobic digestion stage, the maximum organic acid productivity was obtained at pH 5.0, $37^{\circ}C$, HRT 2 day and under anaerobic standing condition. The optimal operating conditions of PSB reactor for the treatment of swine wastewater were pH 7.0, $30^{\circ}C$ under 4,000 lux illumination, and optimal initial COD loading (kg COD/kg D. C. W of PSB) was 2 (20% v/v seeding) in the main purification stage. Maximum removal rate of COD reached 92% under the above optimal conditions for 5 days.

  • PDF