• Title/Summary/Keyword: 조강콘크리트

Search Result 102, Processing Time 0.024 seconds

Experimental Study on the Development and Application of High-Performance Composite Utilizing Industrial Wasts Products for Construction Works -Carbon Fiber Reinforced Fly Ash.Cement Composites- (산업폐기물을 이용한 건재용 고성능복합체의 개발 및 응용에 관한 실험적 연구 -탄소섬유 보강 플라이애쉬.시멘트 복합체-)

  • 박승범;이보성;윤의식
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.101-110
    • /
    • 1991
  • Results of an experimental study on the manufacture, the mechanical properties and watertightness of pitch - based carbon fiber reinforced fly ash. cement composites are presented in this paper. The carbon fiber reinforced fly ash. cement composites using early strength cement silica powder and a small amount of stylene butadiene rubber latex are prepared with carbon fiber, foaming agents and mixing conditions. As a result, the mechanical and physical properties such as compressive , tensile and flexural strengths, watertightness and drying shrinkage of lightweight carbon fiber reinforced fly ash cement composites are Improved by using a samll amount of stylene butadiene rubber latex. Also, the manufacturing pnx:ess technology of carbon fiber reinforced fly ash . cement composItes is developed. The development and applications of precast products of lightweight carbon fiber remforced cement composites are expected in the near future.

A study on the Practical Application of High Early Strength Type Concrete Using Fine Particle Classifying Cement (입도분급 미분 시멘트를 이용한 조강형 콘크리트의 현장실용화에 관한 연구)

  • Choi, Sung-Yong;No, Dong-Hyun;Kim, Ki-Hoon;Kim, Kyung-Min;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.117-121
    • /
    • 2008
  • This study investigates practical application of high early strength type concrete using fine particle classifying cement, and the results are summarized as following. The replacement use of FC 30% did not great influence on concrete mix, therefore mixing without additional SP and AE was available using equal mix with OPC. The ratio of increasing temperature by heat of hydration was similar with OPC, and the compressive strength was over then 5MPa at -28℃ outside temperature on 2nd day. Therefore, it is considering that the first purpose, the effect of shortening terms of work by early demolding, will be available. The rebound rate of type "P" schumidt hammer was relative with compressive strength, and the rebound rate for verifying 5MPa of compressive strength was estimated about 55 considering rate of safety. Therefore, assuming demolding date is available efficiently.

  • PDF

Performance Evaluation of Concrete Polishing Robot with Omnidirectional Mobile Mechanism (전방향 이동 메커니즘을 적용한 콘크리트 폴리싱 로봇의 성능평가)

  • Cho, Gangik;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.112-117
    • /
    • 2016
  • In the construction industry, concrete polishing is used to grind and rub the surface of concrete grounds with polishing machines to increase the strength of the concrete after deposition. Polishing is performed manually in spite of the generation of dust and the requirement of frequent replacements of the polishing pad. The concrete polishing robot developed in this research is a novel polishing automation system for preventing the workers from being exposed to poor working environments. This robot is able to change multiple polishing tools automatically; however, the workers can conveniently replace the worn-out polishing pads with new ones. The mobile platform of the polishing robot employs omnidirectional wheels to enable a flexible motion even in small and complicated workspaces. To evaluate the performance of the developed concrete polishing robot, extensive experiments including square trajectory tracking, automatic tool changing, actual polishing, and path generation simulation were performed.

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

A Study on the Properties of Concrete Using Water Reducing Agent (감수제(減水劑)를 사용(使用)한 콘크리트의 제성질(諸性質)에 관(關)한 연구(硏究))

  • Kang, Sin Up;Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.90-102
    • /
    • 1986
  • This study was performed to obtain the basic data which can be applied to the use of concretes. The data was based on the properties of concrectes depending upon water-cement ratios and addings to compare those of plain concrete. The results obtained were summarized as follows; 1. In case the proper quantity of water reducing agent was added, unit weight of water is decreased to 12.9% with WR-LG of water reducing set standarding agent and to 8.6% with HF-SP of high fluid agent and to 17.2% with AH-WR of water reducing set accelerating agent, respectively, as compared with plain concrete. With the increase of water reducing agent content unit weight of water was greatly decreased. 2. The adding rate of water reducing agent which produce maximum strength was 0.2% with WR-LG and 0.4% with HF-SP and AH-WR, respectively. The increasing rates of strengths were showed that WR-LG is 24.1% and that HF-SP is 41.8% and that AH-WR is 43.3%, respectively, as compared with plain concrete. 3. The correlations between compressive and tensile strength were highly significant as a straight line. the multiple regression equations of compressive and tensile strength were computed with the variables of curing age and addition of water reducing agent. They were highly significant. 4. In case the proper quantity of water reducing agent was added, the correlations between water-cement ratio and compressive strength were highly significant as a straight line. The increasing rates of strength were showed higher than the decreasing rates of water cement-ratio.

  • PDF

Effects of Time Shortening on Project Cost in Housing Complex with Different Number of Layers (저층·고층 아파트가 혼합배치된 단지에서 공기단축이 건설사업비에 미치는 영향 분석)

  • Bang, Jong-Dae;Chun, Young-Soo;Jun, Myoung-Hoon;Kim, Sa-Rang;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.415-421
    • /
    • 2012
  • In case of Korean housing complex, there became more mixed arrangement of buildings with different number of layers for a variety of urban skyline, recently. For example, around 33% of the construction sites of 'A' public corporation have gaps of more than 4 layers between high-rise buildings and low-rise ones in the same site, according to the survey. Generally, construction duration of the housing complex is estimated based on the layers of the highest building. Due to this baseline, whole construction duration could be extended so that the project cost could be increased. Therefore, framework duration of higher-rise buildings should be reduced to secure the feasibility of the project. On the other hands, these shortenings could adversely harm the feasibility in some cases because there are a wide range of combinations of the buildings with different number of layers in designing housing complex. Therefore, this study shows the results of analysis on effects of framework time shortening on the cost in housing complex project. Moreover, this could set the baseline of checking possibilities in condensing the construction duration of projects with buildings of different layers by supplying comprehensive database.

A Study on the Strength at an Early Stage of the Compound Mixed into Polycarboxylate (Polycarboxylate에 혼합 사용된 혼화제의 조기강도 발현성상에 관한 연구)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.175-181
    • /
    • 2009
  • In this research, experiments were conducted to find out whether polycarboxylate could be used as a crude steel admixture for practical work, depending on the change in the replacement level of the compound mixed into polycarboxylate. Its fluidity was satisfactory, its airspace was a bit smaller than the KS standard, and its unit volume weight was proven to meet the standard. The amount of bleeding was smallest in B2, and in terms of the solidification time, the first and the last solidification was faster in A1, B1, and C1. With regard to the compressive strength in early days as acharacteristic of hardened concrete, all addition rates of 7-day C2 displayed the highest strength value, among which the addition rate of 1.3% had the biggest strength performance tendency. The seal strength also showed the strength performance rate which was about one tenth as big as that of the compressive strength. The length change rate resulting from dryness and contraction was proven to be good, and once the appropriate AE air entraining agent is used, it is evaluated to be a very useful and practical compound out in the field.

Fundamental Properties of High Strength Concrete Depending on the Elaine of Cement Particle Classifying (입도분급 시멘트의 분말도 변화에 따른 고강도 콘크리트의 기초적 특성)

  • Choi, Sung-Yong;Kim, Seong-Hwan;Cha, Wan-Ho;Kwon, O-Bong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.71-74
    • /
    • 2007
  • This study investigates the fundamental properties of high strength concrete made with various blame values of cement, manufactured by the particle screening method in a pulverizing process. Test showed that concrete using lower blame of cement, such as large particle (L) and both ordinary and large particle (OL), increased the fluidity of fresh concrete. As tine progressive, it was noticeable that the specimens using ordinary cement (OPC) gradually decreased the fluidity, but the other specimens showed the sudden decline until 30 minutes, which is followed by a gradual decrease after 60 minutes. For the setting time, higher blaine of cement accelerated the initial and final setting time, especially concrete using minute size of cement (M) was 10 hours faster than OPC. Compressive strength of L exhibited similar value at 1 days as to that of strength in OPC at 3 days. Importantly, the specimens using M also revealed the similar strength value, regardless of curing temperature between $-5^{\circ}C$ and $20^{\circ}C$, which means that using this minute particle of cement in concrete can secure the strength development even in the lower temperature circumstance. Therefore it is clear that using OPC+M simultaneously at cold weather concreting can resist the early frost and develop the early strength of concrete.

  • PDF

Fundamental Properties of Concrete Using Liquid Type High Early Strength Agent with Water to Binder Ratio (물결합재비 변화에 따른 액상형 조강제를 사용한 콘크리트의 기초적 특성)

  • Noh, Sang-Kyun;Oh, Sang-Baek;Lee, Gun-Cheol;Lee, Mun-Hwan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.57-60
    • /
    • 2007
  • This study is to discuss the effect of the liquid type high early strength agent considering early strength, developing strength, and economics of the concrete using admixtures. The powder type high early strength agent does not helpful because the field application is not available such as the problem of mixing process and rack of economics. To make up these subjects, the plain mixture contains the standard type AE water reducing agent, and the types of the agents are the standard type AE water reducing agent(P),liquid type high early strength agent(AD),poly carboxylate high early strength type AE water reducing agent(E1), and naphthalene + melamine high early strength type AE water reducing agent(E2). As the Contents of the agents, E1 and E2 is two types each cases, and P is one type to satisfy the target fluidity and air content, AD is three types as 0.5, 1.0,and 1.5%. In the case that AD is mixed, the fluidity is decreased, but air content is increased. For increasing strength of the early age, using OPC is more effective than FA and BS for increasing the early strength of the concrete, and if the air content is secure as plain, the effect of the developing strength can be increased because the air content is increased about 2% in the case that AD is used.

  • PDF

Reaction Characteristics of the CAC with Various Gypsum Type and Mixing Ratio (석고 종류 및 혼입률에 따른 CAC 반응 특성)

  • Choi, Sun-Mi;Kim, Jin-Man;Koo, Ja-Sul
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • Ladle furnace slag is a byproduct of the steel-making process, and it contains the mineral β-C2Sandtherapid-settingmineral (dependingonwhichreducingagenthasbeenused). Ladle furnace slag is often treated through slow cooling, which causes the slag to lose its reactivity. In this study, the properties of air-quenched CAC and pulverized ladle furnace slag containing gypsum were evaluated, and the optimal mixing ratio was determined for broadening their usage. Consequently, the properties of CAC aredemonstrated by the dissolution of gypsum after a period of three hours and the content of gypsum after a period of one day. The optimal mixing ratio of anhydrate and hemihydrate gypsum is found to be within 30% and that of dihydrate gypsum is found to be higher than 35%. Furthermore, based on the results of CAC with dihydrate gypsum, the applicability of the by-product dihydrate gypsum has been verified.