• Title/Summary/Keyword: 젤 모사 추진제

Search Result 9, Processing Time 0.03 seconds

Simulant Gel Propellant Characteristics depending on Mixing Method (제작방법에 따른 모사 젤 추진제의 특성 연구)

  • Kim, Jae-Woo;Jun, Doo-Sung;Shin, Woong-Sup;Lee, Hyo-Mi;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.467-470
    • /
    • 2011
  • In this study, two different kind of impeller, commercial hand blender and manual type were used to investigate the most effective mixing method for simulant gel propellant. Ionized Water, Carbopol 941 and NaOH were used to produce the simulant gel for temperature of $25^{\circ}C$ and $50^{\circ}C$. The amount of bubbles produced during mixing of simulant gel at $50^{\circ}C$ were higher than that of simulant gel at $25^{\circ}C$. After 24 hours, bubbles of simulant gel made at $50^{\circ}C$ disappeared rapidly with respect to the bubbles of gel made at $25^{\circ}C$. Bubbles from blender did show notable amount even after 24 hours. Among mixing type, it was found that the pitched paddle impeller was the best candidate for the production of simulant gel.

  • PDF

Spray Characteristics of Water-Gel Propellant by Impinging Injector (Water-Gel 모사 추진제의 충돌 분무 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Sang-Sun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.11-14
    • /
    • 2009
  • The implementation of gelled propellants systems offers high performance, thrust-control, energy management of propulsion, storability, and high density impulse of solid propulsion. Present study focused on the spray behavior of liquid sheets formed by impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are then compared with experiments conducted on spray images formed by impinging jets concerning with air-blast effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure, closed rim pattern shape appeared. As increasing air mass flow rate(decreasing GLR), spray breakup and atomization phenomenon better improved and spray structure instabilities for the effect of air-blast are also increased.

  • PDF

Flow Characteristics Investigation of Gel Propellant with Al2O3 Nano Particles in a Curved Duct Channel (Al2O3 나노입자가 젤(Gel) 추진제의 곡관 유동특성에 미치는 연구)

  • Oh, Jeongsu;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.47-55
    • /
    • 2013
  • Curved duct channel flow characteristics for non-Newtonian gel fluid is investigated. A simulant gel propellant mixed by Water, Carbopol 941 and NaOH solution has been chosen to analyze the gel propellant flow behavior. Rheological data have been measured prior to the flow analysis where water-gel propellant and water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number examined by the numerical simulation in the U-shape duct flow reveals that although water-gel-nano propellants have higher apparent viscosity, the critical Dean number do show no notable difference for both the two gel propellant. It is found that the power-law index may be a dominant parameter in determining the critical Dean number and that the gel with particles addition may be more vulnerable to Dean instability.

Flow Simulation of Simulant Gel Propellant with $Al_2O_3$ Nano Particles in A U-Type Duct (U-자형 덕트에서의 $Al_2O_3$ 나노 입자를 포함한 모사 Gel 추진제의 유동 특성 수치해석)

  • Oh, Jeong-Su;Park, Ji-Hoon;Jang, Seok-Pil;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.377-382
    • /
    • 2010
  • The Present study uses non-Newtonian simulant gel propellant mixed by Water, Carbopol 941, and NaOH solution in order to analyze the gel propellant flow behavior. Rheological data have been measured and obtained prior to the analysis of flow characteristics where water-gel propellant as well as water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number were examined by numerical simulation of gel propellant in the U-shape duct flow. It is found that though gel-nano propellants have higher apparent viscosity, the critical Dean number did not showed notable difference with respect to the water-gel propellant. It is believe that this is due to the fact that the power law index of both propellants have close value, as was demonstrated by Fellouah et al.[1]

  • PDF

Surface Tension Change of Simulant Gel Propellant according to the Metal Particle Addition (금속입자 첨가에 따른 모사젤 추진제의 표면장력 변화)

  • Kim, Kyehwan;Kim, Sijin;Han, Seungjoo;Kim, Jinkon;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • In this study, the surface tension of simulant gel propellants was measured by Du $No{\ddot{u}}y$ ring method. The variation of the surface tension was investigated with respect to the amount of the gelling agent, and metal particle addition. Distilled water was used as the base fluid for the preparation of the simulant gel propellant where Carbopol 941 was used as a gelling agent and SUS304 spherical metal particles (mean diameter : 100 nm) as simulant energetic particles. As a result of measurements, surface tension increased with increasing gelling agent concentration while, in the presence of metal particle, different behavior of surface tension has been observed.

Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet (젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.

Study of Flow Characteristics of Gel Propellant through Various Injector Geometries (인젝터 형상 변화에 따른 Gel 추진제의 유동 특성 연구)

  • Oh, Jeong-Su;Jeon, Doo-Sung;Choi, Sang-Tae;Kim, Deok-Yoon;Choi, Yang-Ho;Lee, Jeong-Hyuk;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.300-303
    • /
    • 2010
  • The present study investigates the flow characteristics of simulant gel propellant(carbopol 0.5%wt) in a variety of injectors. Rheological data for gel propellant has been measured and injector flow characteristics for plain-orifice, chamfered-orifice and venturi type injector have been numerically analyzed. The apparent viscosity of plain-orifice and chamfered-orifice have tendency to increase along axial direction, whereas for venturi type injector, low viscosity has been achieved in the injector flow. This phenomenon was clearly pronounced as Reynolds number is increased.

  • PDF

Breakup Process and Wave Development Characteristics of Gel Propellant Simulants at Various Gelling Agent Contents (젤 모사 추진제의 점도 변화에 따른 분무 분열 및 파장 변화 특성)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Jung-Hun;Kim, Do-Hun;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.140-145
    • /
    • 2011
  • Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the breakup process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. The breakup process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action.

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector (압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구)

  • Cho, Janghee;Lee, Donghee;Kim, Sulhee;Lee, Donggeun;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.