• Title/Summary/Keyword: 제트흡입비

Search Result 29, Processing Time 0.027 seconds

Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I) (원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성)

  • Lee, Chang-Ho;Kim, Yeong-Seok;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.

Papers : A Study on the Characteristics of the Ramjet Engine Combustor using a Two Color PIV Technique (논문 : Two Color PIV 기법을 이용한 램제트엔진 연소기 특성에 대한 연구)

  • An,Gyu-Bok;Yun,Yeong-Bin;Jeong,In-Seok;Heo,Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • A two color PIV technique has been developed for visualization of complex and high speed flow in a ramjet combustor. Two color PIV has the advantages that velocity distribytions in high speed flowfields can be measured simply by varying the time interval between two different laser beams and a directional ambiguity problem can be solved by color separation, and then a singnal-to-noise ratio can be increased through nearly perfect cross-correlation. As a basic research of the ramjet engine, a 2-D shaped combustor with two symmetric air intakes has been manufactured and an experimental study has been conducted using a two color PIV technique. The flow characteristics such as recirculation zones and two intake air mixing have been investigated varying inlet angles and dome heights. It is found that the size and air mass ratio of reciculation zones are affected mainly by an inlet angle, but not much by a dome height.

Design Optimization and Analysis of a RBCC Engine Flowpath Using a Kriging Model Based Genetic Algorithm (Kriging 모델기반 유전자 알고리즘을 이용한 RBCC 엔진 유로 최적설계 및 분석)

  • Chae, Sang-Hyun;Kim, Hye-Sung;Yee, Kwan-Jung;Oh, Se-Jong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • A design optimization method is applied for the flow path design of RBCC engine, an important factor for the determining the propulsion performance operating at air-breathing mode. A design optimization was carried out to maximize the specific impulse of the RBCC engine by using a genetic algorithm based on the Kriging model. Results are analyzed using ANOVA and SOM. Design conditions of ramjet and scramjet mode are selected as Mach number 4 at 20 km altitude and Mach number 7 at 30 km, respectively. The optimized design presents that the specific impulse is increased by 7% and 10% on each condition than the baseline design.

Aerodynamic characteristics of Air Inlet Model for Ramjet Engine Mach Number of 2.2 (Mach2.2 램제트엔진 항공흡입구 모형의 공기역학적 특성)

  • 박종호;신완순;신필권;박용철;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.12-12
    • /
    • 1998
  • 무기체계의 추진체로서 고체 로켓트 추진기관이 제작의 용이성, 구조의 간단성, 이에 따른 저렴한 제작비, 그리고 고 신뢰도 확보가능 등의 여러 장점으로 대부분의 현존 전술 유도무기에 채택되어 사용되어 오고 있으나 대응, 방어 무기체계의 빠른 발전으로 이에 따른 새로운 추진기관의 유도무기체제가 요구되고 있다. 램제트 기관은 공기흡입추진기관으로 상대적으로 높은 비추력(1000-2000s)과 추력 중량비(∼20)을 가지며, 이로 인해 기존의 로켓 엔진에 비해 4-5배의 성능을 낼 수 있으며, 초음속 장거리 비행에 적합하다며, 또한 높은 속도영역까지 운용가능하고 구조가 비교적 간단하다.

  • PDF

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.

Development of Stand-alone Performance Test System for an Intake-diffuser of the Waterjet Propulsion (Waterjet 추진장치의 흡입구유도관 단독성능 시험기법 개발)

  • Ahn Jong-Woo;Kim Ki-Sup;Park Young-Ha;Kim Kyung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.15-23
    • /
    • 2004
  • In order to investigate efficiency and flowfield charateristics of the intake-diffuser for the ship waterjet propulsion, new experimental verification technology was set up in the cavitation tunnel. 1-hole and 5-hole pilot tubes were designed and manufactured to measure the pressure and velocity distributions at intake-diffuser entrance and impeller inlet. The calibration of the 5-hole pilot tubes is conducted at the cavitation tunnel The cavitation inception occurs at the intake lip, and the occurrence position depends on IVR (Inlet Velocity Ratio) condition. The present experimental device will be applied sufficiently for the development of the design and performance improvement technologies.

Study on Performance Design and Sensitivity of a Liquid Ramjet Engine (액체 램제트 엔진의 성능 설계와 성능 민감도에 관한 연구)

  • Sung, Hong-Gye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.27-32
    • /
    • 2006
  • The performance-design algorithm of a liquid ramjet engine was studied, which showed the comparable results with CFD calculation except the shock-boundary layer interaction region. In addition to the description of the design algorithm, several important design parameters, such as equivalence ratio, combustion efficiency, air capturing factor, and flight Mach number, are evaluated as predicting one of performance factors, Isp, of a typical ramjet engine, so that the flight envelope might not be determined with narrow perspective performance-operation-area in off-design regime.

  • PDF