• Title/Summary/Keyword: 제트혼합

Search Result 167, Processing Time 0.028 seconds

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

Investigation of the Prediction Performance of Turbulence and Combustion Models for the Turbulent Partially-premixed Jet Flame (난류 부분예혼합 제트화염에 대한 난류 및 연소모델의 예측성능 검토)

  • Kim, Yu Jeong;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-43
    • /
    • 2014
  • The prediction performance of 9 model sets, which combine 3 turbulent models and 3 combustion models, was investigated numerically for turbulent partially-premixed jet flame. The standard ${\kappa}-{\varepsilon}$ (SKE), Realizable ${\kappa}-{\varepsilon}$ (RKE) and Reynolds stress model (RSM) were used as a turbulence model, and the eddy dissipation concept (EDC), steady laminar flamelet (SLF) and unsteady laminar flamelet model (ULF) were also adopted as a combustion model. The prediction performance of those 9 model sets was evaluated quantitatively and qualitatively for Sandia D flame of which flame structure was measured precisely. The flame length was predicted as, from longest to shortest, RSM > SKE > RKE, and the RKE predicted the flame length of the jet flame much shorter than experiment. The flame temperature was over predicted by the combination of RSM + SLF or RSM + ULF while the flame length obtained by RSM + SLF and RSM + ULF was well agreed with the experiment. The combination of SKE + SLF and SKE + ULF predicts well the flame length as well as the temperature distribution. The SKE turbulence model was most superior to the other turbulent models, and SKE + ULF showed the best prediction performance for the structure of turbulent partially-premixed jet flame.

A Study on NOx Formation Pathway of Methane-Air Lean Premixed Combustion by using PSR Model (PSR 모델을 이용한 메탄-공기 희박 예혼합 연소의 NOx 생성 경로 연구)

  • Lee, Bo-Rahm;Kim, Hyun;Park, Jung-Kyu;Lee, Min-Chul;Park, Won-Shik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.46-52
    • /
    • 2009
  • In this study the predictions of NOx in methane-air lean premixed combustion in PSR were carried out with GRI 3.0 methane-air combustion mechanism and Zeldovich, nitrous oxide, prompt, and NNH NO formation mechanism by using CHEMKIN code. The results are compared to the JSR experimental data of Rutar for the validation of the model. This study concerns about the importance of the chemical pathways. The chemical pathway most likely to form the NO in methane-air lean-premixed combustion was investigated. The results obtained with the 4 different NO mechanisms for residence time(0.5-1.6ms) and pressure(3, 4.7, 6.5 atm) are compared and discussed.

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating were investigated. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There was also over-heating on the front surface of the pylon without film cooling. The coolant injected parallel to the front surface of the pylon protects the pylon from over-heating.

An Experimental Study on the Lift-off Behavior of Tone-Excited Propane Non-premixed Jet Flames (음향 가진된 프로판 비예혼합 제트 화염의 부상 거동에 대한 실험적 연구)

  • Kim, Seung-Gon;Kim, Kang-Tae;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.569-579
    • /
    • 2004
  • The lift-off characteristics of lifted laminar propane jet flames highly diluted with nitrogen are investigated introducing acoustic forcing with a fuel tube resonance frequency. A flame stability curve is obtained according to forcing strength and the nozzle exit velocity for N2 diluted flames. Flame lift-off behavior is globally classified into three regimes; 1) a weakly varying partially premixed behavior caused by a collapsible mixing for large forcing strength, 2) a coexistent behavior of the edge flame and a weakly varying partially premixed behavior for moderate forcing strength, and 3) edge flame or triple flame behavior for small forcing. It is shown that the laminar lifted flame with forcing affects flame lift-off behavior considerably, and is also clarified that the flame characteristic of flame base is well described with the penetration depth of the degree of mixing, ${\gamma}$$\_$$\delta$/. It is also confirmed that the weakly varying partially premixed flame caused by a collapsible mixing fur large forcing strength behaves as that just near flame blow-out in turbulent lift-off flame.

Fuel Distribution Measurements in ATR Combustor using PLIF (PLIF를 이용한 ATR 연소기 내부의 연료분포 측정)

  • Yang In-Young;Jin You-In;Yang Soo-Seok;Park Seung-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.274-277
    • /
    • 2004
  • Fuel/air mixing in air turbo ramjet(ATR) combustor is a significant parameter of combustion stability and efficiency. In this study, fuel distribution in the ATR model combustor was measured to compare the degree of mixing with respect to the velocity ratio$(r=v_a/v_f)$ between fuel gas and air. Planar laser-induced fluorescence(PLIF) and image processing method were used to obtain two dimensional fuel distribution. Fuel mixing went bad with approaching to r=1.

  • PDF

A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames (비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구)

  • Jo, Joon-Ik;Lee, Kee-Man
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.

Numerical Analysis for the Detailed Structure of Syngas Turbulent Nonpremixed Flames (석탄가스 난류비예혼합 화염장의 해석)

  • Lee, Jeong-Won;Kim, Chang-Hwan;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.775-778
    • /
    • 2007
  • The present study numerically investigate the detailed structure of the syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction, the transient flamelet model has been applied to simulate the combustion processes and $NO_X$ formation in the syngas turbulent nonpremixed flames. The single mixture fraction formulation is extended to account for the effects of the secondary inlet mixture. Computations are the wide range of syngas compositions and oxidizer dilutions. Based on numerical results, the detailed discussion has been made for the effects of syngas composition and oxidizer dilution on the structure of the syngas-air and syngas-oxygen turbulent nonpremixed flames.

  • PDF