• Title/Summary/Keyword: 제트편향각

Search Result 15, Processing Time 0.018 seconds

A study on structural safety evaluation of jet vane under very high temperature and dynamic pressure (초고온 동압을 받는 제트 베인의 구조 안전성 평가에 대한 연구)

  • Park Sunghan;Lee Sangyeon;Park Jongkyoo;Kim Wonhoon;Moon Soonil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.99-105
    • /
    • 2005
  • To evaluate structural safety factor of the jet vane for the thrust deflection system under the dynamic pressure and very high temperature($2700^{\circ}C$) of the combustion gas flow, the high temperature tension tests of refractory metals and 3-D nonlinear numerical simulations are performed. Through the analysis of high temperature structural behavior for jet vane, the structural safety of jet vane is evaluated, and numerical results are compared with static pound tests of jet vanes. It has been found that most of structural and thermal loading is concentrated on the vane shaft which worked as safe under $1400^{\circ}C$. From the comparison of static ground tests and numerical results, the evaluation criterion using the vane load and shaft displacement is more useful to estimate the structural safety than using the equivalent stress.

  • PDF

A Study on Structural Safety Evaluation of let Vane under very High Temperature and Dynamic Pressure (초고온 동압을 밭는 제트 베인의 구조 안전성 평가에 대한 연구)

  • Park Sunghan;Lee Sangyeon;Park Jongkyoo;Kim Wonhoon;Moon Soonil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-24
    • /
    • 2005
  • To evaluate structural safety factor of the jet vane for the thrust deflection system under the dynamic pressure and very high temperature(2700$^{\circ}C$ ) of the combustion gas flow, the high temperature tension tests of refractory metals and 3-D nonlinear numerical simulations are performed. Through the analysis of high temperature structure behavior for jet vane, the structure safety of jet vane is evaluated, and numerical results are compared with static ground tests of jet vanes. It has been found that most of structural and thermal loading is concentrated on the vane shaft which worked as safe under 1400$^{\circ}C$. From the comparison of static ground tests and numerical results, the evaluation criterion using the vane load and shaft displacement is more useful to estimate the structural safety than using the equivalent stress.

The Study on Aerodynamic Characteristics for the Design of High Efficiency Jet Vane (고 효율 제트 베인 설계를 위한 공기역학적 특성 연구)

  • 길경섭;정용갑;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Of the various means for active trajectory correction, a thrust vector control system represents the only principle independent of missile external forces so that this method is operative. The purpose of this study is to analyze the characteristic of jet vane TVC(Thrust vector control) system among mechanical jet deflection. To ensure high performance leading edge shape, aspect ratio and ablated condition is optimized. Supersonic flow system, jet vanes and nozzle with Mach number 2.88 and under expansion ratio 2 were designed to study aerodynamic characteristics of leading edge shape, aspect ratio and ablated conditions.

An Analysis on 3-Dimensional Temperature Distribution of Jet Vanes for a Thrust Vector Control (추력방향조종용 제트베인의 3차원 온도분포 해석)

  • Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.283-291
    • /
    • 2011
  • A computational investigation has been carried out to study the heat transfer characteristics of jet vane assembly used for the thrust vector control(TVC) of a vertical launch motor. In this study, the coefficients of convective heat transfer on the jet vane are calculated using the solutions of thermal boundary-layer equation and several semi-empirical equations. The calculation of 3-dimensional temperature distribution for the jet vane assembly was performed using the softwares called PATRAN and ABAQUS. The accuracy of the present numerical method is verified by comparing with the measured and calculated temperatures within jet vane shaft. The temporal variation of jet vane temperatures for three deflection angles(0o, 12.5o, 25o) was discussed.

  • PDF

Design of Electromechanical Actuator Capable of Simultaneous Control of Aerodynamic and Thrust Vector (공력과 추력방향 동시 제어가 가능한 전기식 구동장치 설계)

  • Lee, Ha Jun;Yoon, Kiwon;Song, In Seong;Park, Chang Kyoo;Lee, Young Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Electromechanical Actuator(EMA) for flight vehicles generally serves to control the fin deflection angle or the thrust vector angle. This paper deals with design and development of EMA for both aerodynamic control and thrust vector control. In this paper, a novel compact EMA is proposed that can simultaneously control both the tail fin and the jet vane with one actuator and detach the jet vane after vertical launch and rapid turn of the flight vehicle so as to increase efficiency during flying to target. To do this, we designed the EMA using a push-push link mechanism and derived a mathematical model. The mathematical model is validated by comparing simulation result and experimental data. The performance and reliability of the proposed EMA have been verified through performance test, environmental test and ground test. The proposed EMA is expected to be useful as an EMA for flight vehicles because of its simple and compact structure, as well as its performance and reliability.