• Title/Summary/Keyword: 제트충돌

Search Result 326, Processing Time 0.025 seconds

경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구

  • 이택상;이정민;박종호;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.32-32
    • /
    • 1999
  • 초음속 과소 팽창 제트가 경사진 평판에 충돌을 하게 되면 평판의 표면과 노즐출구에서 팽창된 자유제트(Free jet)와의 상호 간섭으로 인해 매우 복잡한 유동 구조가 형성된다. 예를 들면, 수직평판에서 발생되는 판 충격파(Plate shock)는 경사평판에서는 Upper plate shock, Lower plate shock, Intermediate plate shock과 같이 여러 형태로 발생되어 평판에서의 압력분포에 있어 수직일 경우와 다소 다른 경향을 보여준다. 본 연구의 주요 목적은 평판의 경사각을 변화시킬 때 평판 표면에서의 복잡한 유동 현상을 이해하는데 있다.

  • PDF

Flow and Heat Transfer Characteristics on Oblique Impingement Surface by Single Axisymmetric Jet (단일 축대칭제트에 의한 경사충돌면에서 유동 및 열전달 특성)

  • 이창호;황상동;조형희;정학재
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • An experimental study has been conducted to determine the effects of inclined impinging jet on the local heat transfer coefficients. A single jet with nozzle diameter of 24.6 mm was tested for Reynolds numbers from 10,000 to 70,000 and nozzle-to-plate spacings of 2~6 jet diameters. The angle of inclination of the impingement surface relative to the horizontal surface was varied from $0^{\cire}$ (normal impingement) to $60^{\cire}$. The results indicate that the point of maximum heat transfer is moved up from the geometrical stagnation point of inclined surface by Coanda effect. The local heat transfer coefficients on the minor jet region decrease more rapidly than on the major jet region, thus creating an imbalance in the cooling capabilities on the two sides.

  • PDF

Study of Effects of the Boundary Layer of Micro-Supersonic Jets on the Flow Impingments in Laser Machining (마이크로 초음속 제트 경계층이 레이저가공에서 나타나는 충돌유동에 미치는 영향에 관한 연구)

  • Yu, Dong-Ok;Lee, Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.285-288
    • /
    • 2007
  • Numerical study of the influence of the boundary layer of micro-supersonic jet impinging on a flat plate with a hole was performed, to investigate the role of gas jet to eject melted materials from the cut zone in the laser machining. The detailed shock structures and the information of the mass flow rate through the hole were compared to the results of the previous study, in which the effects of boundary layer inside nozzle was not accounted. It was found that the boundary layer inside the micro- nozzle introduced stronger Mach disc over the machining zone, and thus that the mass flow rate through the hole decreased.

  • PDF

Experimental Study of the Supersonic Dual, Coaxial Jet Impinging on a Flat Plate (수직평판에 충돌하는 초음속, 이중, 동축 제트유동에 관한 실험적 연구)

  • 김중배;이준희;우선훈;이장창;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.44-45
    • /
    • 2002
  • 일반적으로 노즐이나 오리피스로부터 방출되는 초음속 단일 자유제트 유동의 경우, 제트내부에서 발생하는 충격파 시스템이나, 제트경계의 형상 그리고 제트코어의 길이 및 초음속 영역의 길이 등은 종래의 연구로부터 비교적 잘 알려져 있다. 이들 연구에 의하면, 제트의 압력비가 어느 정도 증가하게 되면, 노즐 하류에서 제트내부에는 마하 디스크가 발생하게 되며, 제트유동은 압축과 팽창을 반복하는 구조로 된다. 또 노즐 출구로부터 마하 디스크까지의 거리와 마하 디스크의 직경 등은 노즐의 압력비의 함수로 주어진다고 알려져 있다.

  • PDF

Experimental Study on the Heat Transfer of Supersonic Impinging Jet (초음속충돌제트의 열전달에 관한 실험적 연구)

  • Lee, Chan;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.323-327
    • /
    • 1991
  • An experiment was conducted to determine the local heat transfer from a supersonic hot jet impinging at 45.deg. to a plate surface. A semi-analytic method was used to determine the Nusselt number from experimental data. The results indicates that the location of the peak heat transfer is displaced from the geometric center of the axisymmetric jet and that the radial variation of the local heat transfer is steeper than that in the subsonic impinging jet. In the stagnation region, the heat transfer from the supersonic impinging jet is about 10 times larger than that from the subsonic one, while the heat transer away from the stagnation region is of the same magnitude as that of the in compressible turbulent radial wall jet.

Heat Transfer Characteristics of a Slot Jet and Circular Jets Impinging on a Flat Surface (벽면에 충돌하는 슬롯형 제트와 원형 제트의 열전달 효과 비교)

  • Kim, Hui-Hyun;Kim, Dae-Seong;Yoon, Soon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.540-545
    • /
    • 2001
  • An experimental study was conducted to compare the heat transfer characteristics of an impinging slot jet and three kinds of impinging circular jets. Thermochromic liquid crystal with an image processing system was employed to measure the temperature of impinging wall where constant heat flux condition was applied. The distribution of convective heat transfer coefficients were then evaluated for eight nozzle-to-surface distance settings for each jet cases. The cooling effect was linearly proportional to the number of nozzles for circular jet cases at the same nozzle exit speed. However, the heat transfer under constant volume flow rate was the most at single circular jet. It was concluded that the overall convective heat transfer was better at the circular jets than the slot jet.

  • PDF

Total temperature investigation in free & wall jet regions (고속 자유/벽 제트 영역에서의 총온도 특성 고찰)

  • Jung Hyungab;Lee Jangwoo;Yu Mansun;Cho Hyunghee;Hwang Kiyoung;Bae Ju chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.329-333
    • /
    • 2005
  • Total temperature distribution in high speed fee & wall jet regions was investigated using the total temperature probe. For the free jet, the distance of probe from the nozzle exit is changed in the range of 1, 2, 4 and 6 times o nozzle exit diameter. Energy separation phenomenon was observed on shear layer between jet and ambient. In wall jet region, impinging plate was fixed at Z/D=2 and total temperature distribution has been measured for various radial distance($R/D=1.25\sim2.0$). Energy separation phenomenon was found at wall jet boundary and near wall, and was compared with measured adiabatic wall temperature value.

  • PDF