• Title/Summary/Keyword: 제트기류

Search Result 24, Processing Time 0.016 seconds

A Numerical Simulation of the Effect of the Injection Angle and Velocity of the $CO_2$ Agent Nozzle on the Characteristics of $CO_2$ Concentration Distribution ($CO_2$ 소화제 노즐 분사각 및 분사속도가 $CO_2$ 농도분포특성에 미치는 영향에 관한 수치적 연구)

  • Park, Chan-Su
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.44-53
    • /
    • 2006
  • We have conducted a numerical simulation under two-dimensional unsteady conditions in order to analyze the effect according to the injection angle and velocity of the $CO_2$ agent nozzle which is one of the elements for the fixed type $CO_2$ fire extinguishing system installed in a ship on the characteristics of flow and $CO_2$ concentration distribution. The flow fields and concentration fields were measured and analyzed. We can found that the difference of flow patterns according to the conditions of $CO_2$ agent injection nozzle, and in all the conditions of $CO_2$ agent injection nozzle, the iso-concentration line was expanded from the region at which vortex was generated to the surroundings. We can expected that the intensity of the wall jet on the bottom floor was generated differently and the iso-concentration lines were expanded or shrunk according to the angle of $CO_2$ agent injection nozzle. In case of increasing $CO_2$ agent injection velocity maintaining the flow quantity of the $CO_2$ agent injection equally, the iso-concentration line of $CO_2$ agent on bottom floor can be formed more higher than in case of decreasing $CO_2$ agent injection velocity.

Spatial Pattern Analysis for Distribution of Migratory Insect Pests at Paddy Field in Jeolla-province (전라도 지역 논벼에서 비래해충 개체군 분포의 공간패턴분석)

  • Park, Taechul;Choe, Hojeong;Jeong, Hyoujin;Jang, Hojung;Kim, Kwang Ho;Park, Jung-Joon
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.361-372
    • /
    • 2018
  • Migratory insect pest populations migrate from the southern China to Korea through jet streams. In Korea, 5 major migratory insect species are important, i.e. Nilaparvata lugens, Sogatella furcifera, Laodelphax striatellus, Cnaphalocrocis medinalis and Mythimma separate, which are damages to the major crops, rice. This study was conducted from late July 2016 to early September 2016 and from July 2017 to August 2017 in rice paddy of Jeolla-province. C. medinalis and M. separata collected using pheromone traps, while N. lugens, S. furcifera and L. striatellus collected using 3 methods (visual surveys, sweeping surveys, sticky traps). SADIE (Spatial Analysis by Distance IndicEs) among geostatistics was used to analyze migratory insect pests. SADIE was used to analyze spatial distribution and index of aggregation $I_a$, index of clustering $V_i$, $V_j$ were used to investigate the spatial distribution. Also, the clustering indices were mapped as red-blue plot. C. medinalis and M. separata showed different distribution based on SADIE spatial aggregation analysis and red-blue plot analysis. Initial spatial distributions of L. striatellus and other planthoppers were differed for sampling location and time.

A brief review of recent Antarctic climate change (최근 남극의 기후변화 고찰)

  • Seong-Joong Kim;Chang-Kyu Lim
    • The Korean Journal of Quaternary Research
    • /
    • v.32 no.1_2
    • /
    • pp.30-40
    • /
    • 2018
  • In response to the increase in anthropogenic greenhouse gases, the Arctic temperature is increasing rapidly by 2-3 times other regions. This larger Arctic warming than lower latitudes is called 'Arctic Amplification'(Overland et al., 2017; Goose et al., 2018). Associated with the Arctic Amplification, the Arctic sea ice is declining rapidly and Greenland ice sheet is melting rapidly, especially around the coastal margins (State of Climate, 2018). However, Antarctic climate change appears to be different from the Arctic. In the western part of Antarctica, surface temperature is rising rapidly with large sea and land ice melting, but in the eastern part, there is little temperature change with slight increase in sea ice extent. The contrasting east-west temperature response is illustrated by the deepening of the Amundsen Sea Low whose upstream brings warm maritime air to the Antarctic peninsula and Amundsen-Bellingshausen Seas, but downstream air provides cold air to the Ross Sea, increasing sea ice. Besides, the increase in Southern Annular Mode (SAM) phase due to stratospheric ozone reduction enhances westerly winds, pushing sea ice northward by Ekman divergence and cooling east Antarctica. In this study, we review the recent Antarctic climate change and its possible causes.

Intercomparison of Satellite Data with Model Reanalyses on Lower- Stratospheric Temperature (하부 성층권 온도에 대한 위성자료와 모델 재분석들과의 비교)

  • Yoo, Jung-Moon;Kim, Jin-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.137-158
    • /
    • 2000
  • The correlation and Empirical Orthogonal Function (EOF) analyses over the globe have been applied to intercompare lower-stratospheric (${\sim}$70hPa) temperature obtained from satellite data and two model reanalyses. The data is the19 years (1980-98) Microwave Sounding Unit (MSU) channel 4 (Ch4) brightness temperature, and the reanalyses are GCM (NCEP, 1980-97; GEOS, 1981-94) outputs. In MSU monthly climatological anomaly, the temperature substantially decreases by ${\sim}$21k in winter over southern polar regions, and its annual cycle over tropics is weak. In October the temperature and total ozone over the area south of Australia remarkably increase together. High correlations (r${\ge}$0.95) between MSU and reanalyses occur in most global areas, but they are lower (r${\sim}$O.75) over the 20-3ON latitudes, northern America and southern Andes mountains. The first mode of MSU and reanalyses for monthly-mean Ch4 temperature shows annual cycle, and the lower-stratospheric warming due to volcanic eruptions. The analyses near the Korean peninsula show that lower-stratospheric temperature, out of phase with that for troposphere, increases in winter and decreases in summer. In the first mode for anomaly over the tropical Pacific, MSU and reanalyses indicate lower-stratospheric warming due to volcanic eruptions. In the second mode MSU and GEOS present Quasi-Biennial Oscillation (QBO) while NCEP, El Ni${\tilde{n}}$o. Volcanic eruption and QBO have more impact on lower-stratospheric thermal state than El Ni${\tilde{n}}$o. The EOF over the tropical Atlantic is similar to that over the Pacific, except a negligible effect of El Ni${\tilde{n}}$o. This study suggests that intercomparison of satellite data with model reanalyses may estimate relative accuracy of both data.

  • PDF