• Title/Summary/Keyword: 제조 결함

Search Result 11,435, Processing Time 0.035 seconds

저항가열 및 전자빔 증발원을 이용한 물질의 증발 특성

  • Jeong, Jae-In;Yang, Ji-Hun;Park, Hye-Seon;Jeong, Jae-Hun;Song, Min-A
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.130-131
    • /
    • 2011
  • 박막의 제조는 많은 연구의 가장 기초가 되는 시편을 만드는 과정으로 현대의 과학기술에서 매우 중요한 공정 중의 하나이다. 그러나 이러한 박막의 제조는 제조하는 사람의 숙련도나 장치에 의존하며 경우에 따라서는 원하는 특성의 박막을 제조하는 것이 매우 어려운 작업이 되기도 한다. 따라서 경험이 없는 연구자의 경우는 때때로 까다로움과 번거로움을 느끼게 되며, 안정된 공정을 찾기까지 많은 시간을 소비 하게 된다. 특히 부적절한 증발방법의 선정에 따른 실험 결과는 경제적인 손실을 초래할 뿐만 아니라 실험하는 사람을 좌절시키는 가장 큰 요인이 되어왔다. 진공증착에 의한 박막의 제조는 증발법과 스퍼터링, 이온플레이팅 등의 방법이 있으며 이중 증발을 이용한 박막의 제조에는 저항가열 증발, 전자빔 가열 증발, 유도가열 증발 등의 방법으로 구분하고 있다. 저항가열 증발원은 가격이 저렴하다는 장점은 있으나 증발원이 손쉽게 파손되거나 증발량이 일정하지 않아 박막의 정밀 제어가 어려울 뿐만 아니라 때에 따라서는 1 ${\mu}m$ 이상의 후막 형성에도 어려움이 있는 등 많은 제약이 있다. 따라서 적절한 증발원의 선정이 실험의 효율성을 좌우하는 경우가 많다. 적절한 증발원의 선정과 효율적인 실험을 위해 증발원 제조회사에서는 증발원의 선정과 증발 조건과 관련된 자료를 카탈로그 형태로 발행하고 있다. 그러나 그러한 자료만으로는 객관적인 정보를 얻기에 충분하지 못한 경우가 많으며, 어떤 경우에는 저자 등의 경험과 일치하지 않는 정보도 포함하고 있었다. 전자빔 증발원은 냉각이 되는 Crucible에 물질을 담고 고전압의 전자빔으로 물질을 가열시켜 증발시키는 증발원으로 1960년대 이후 박막 제조 실험에 이용되기 시작하였다. 전자빔은 고순도의 피막 제조가 가능하고 증발물질의 교체가 쉬우며 고속 증발이 가능함은 물론 다층막의 제조가 용이하고 증발물질의 제조비용이 저렴하다는 장점이 있다. 이러한 장점 때문에 1970년대 이후에는 전자빔을 이용한 박막제조가 폭 넓게 이루어졌고 이때를 즈음하여 전자빔을 이용한 물질의 증발 특성이 논문으로 발표되기도 하였다. 본 연구에서는 증발에 관한 저자들의 경험을 바탕으로 저항가열과 전자빔을 이용하여 증발실험을 진행한 물질계를 중심으로 각 물질의 증발특성과 가장 효율적인 Liner 등에 대해 기술하였다. 특히, 각종 물질의 증발 특성을 체계화함은 물론 효율적인 증발 방법을 객관적인 Data와 함께 제공하여 효과적인 박막 제조 실험에 도움이 되고자 하였다.

  • PDF

Expansion of Product Liability : Applicability of SW and AI (제조물책임 범위의 확장 : SW와 AI의 적용가능성)

  • KIM, Yun-Myung
    • Informatization Policy
    • /
    • v.30 no.1
    • /
    • pp.67-88
    • /
    • 2023
  • The expansion of the scope of product liability is necessary because the industrial environment has changed following the enactment of the Product Liability Act. Unlike human-coded algorithms, artificial intelligence is black-boxed according to machine learning, and even developers cannot explain the results. In particular, since the cause of the problem by artificial intelligence is unknown, the responsibility is unclear, and compensation for victims is not easy. This is because software or artificial intelligence is a non-object, and its productivity is not recognized under the Product Liability Act, which is limited to movable property. As a desperate measure, productivity may be recognized if it is stored or embedded in the medium. However, it is not reasonable to apply differently depending on the medium. The EU revise the product liability guidelines that recognize product liability when artificial intelligence is included. Although compensation for victims is the value pursued by the Product Liability Act, the essence has been overlooked by focusing on productivity. Even if an accident occurs using an artificial intelligence-adopted service, however, it is desirable to present standards according to practical risks instead of unconditionally holding product responsibility.

로터스 금속의 제조 기술 및 응용

  • Hyeon, Seung-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.57.1-57.1
    • /
    • 2012
  • 금속을 용해 응고시킬 때 생성되는 소위, 주조 결함이나 소결금속 내의 기공은 재료의 성능이나 강도를 현저하게 낮추는 결함으로서 예전부터 기피되어 왔다. 또한, 재료공정에 있어서도 여하의 기공이나 기포가 없는 치밀한 고강도 및 고기능성 재료를 개발하는 것에 최대한의 주의와 관심을 기울여 왔다. 반면에 자연계의 천연물이나 인공물을 둘러보면 그 대부분이 다공질임을 쉽게 눈치챌 수 있다. 예를 들어 목재, 지엽 등의 생물을 시작해서 콘크리트 등의 인공물, 우리 체내의 뼈도 전형적인 다공질구조로 구성되어 있다. 이러한 구조로부터 재료의 재질제어 이외에 구조제어라는 새로운 어프로치를 고려할 수 있고, 최근 들어, 금속재료에 있어서도 이러한 다공질 구조에 관한 연구가 활성화되어 충격흡수재, 생체재료, 베어링재료 등의 다양한 응용이 전개되고 있다. 원주상의 방향성 기공을 갖는 로터스 금속의 제조 원리는 용융금속의 높은 가스용해도와 고체금속의 낮은 가스고용도의 차이를 이용하여 응고할 때 고용되지 않는 가스원자가 기포를 형성시키는 것이다. 수소용해도는 모든 금속에 있어서 온도상승에 따라 증가하지만 융점에 있어서 용해도의 불연속적 증가를 나타내며 응고할 때 고액계면에서 다량의 가스를 방출하고 기공 생성을 야기한다. 특히, 고 액상에 있어서 수소용해도 차가 큰 마그네슘, 니켈, 철, 동 등은 기포를 생성하기 쉽다. 또한 기공의 배열구조를 제어하기 위해 일방향응고법를 이용하여 기공에 방향성을 부여한다. 외관상 기공구조가 연근뿌리를 닮은 것으로 부터 로터스 금속이라는 명칭이 널리 알려져 있다. 이와 같은 제조방법에 의해 로터스 금속은 기공 방향, 기공크기, 기공률을 자유롭게 제어할 수 있고 우수한 기계적 성질이 기존의 발포금속, 소결금속과 전혀 다른 특성을 가지고 있다. 이러한 기공구조는 용해온도, 응고속도, 분위기 가스압, 불활성가스와의 혼합체적비 등의 제어를 통해서 조절할 수 있다. 이와 같이 제조한 방향성 다공질금속은 BT (인플란트, 생체적합성, 저탄성, 경량), ST (초음속기엔진부품, 경량), IT (고성능수냉모듈), ET(고온촉매, 필터)의 분야로의 응용을 기대한다.

  • PDF

참외식초/농축액을 함유한 참외농축음료의 저장조건 모니터링

  • 이기동;김숙경;윤성란;김정옥;정재순
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.168-169
    • /
    • 2003
  • 현재 참외는 생산량의 대부분이 생과로 소비되고 있으나, 저장성이 낮아 새로운 가공식품 개발이 요구되고 있는 실정이다. 이에 참외식초/참외농축액을 함유하는 참외농축음료를 제조하였으며, 유통기간 동안 품질변화를 알아보기 위해 저장온도 및 저장시간에 따른 품질변화를 조사하였다. 배합조건에 따라 배합한 참외농축음료를 8$0^{\circ}C$에서 30분간 살균한 후 저장온도 및 시간에 따른 품질변화 및 관능적 특성변화를 모니터링하였다. 저장온도(20, 30, 40, 50, 6$0^{\circ}C$) 및 저장시간(0, 2, 4, 5, 8 week)을 독립변수(Xi.)로 하여 달리한 각 실험조건을 -2, -1, 0, 1, 2의 다신 단계로 부호화하고 실험조건을 설계한 다음 각 조건에서 저장된 참외음료의 품질특성(종속변수, Yn)을 모니터링하였다. 관능검사는 선정된 패널요원을 대상으로 4$^{\circ}C$에서 저장한 대조구와의 색상, 향, 맛 및 전반적인 기호도가 어떻게 달라지는가를 평가하였으며, 색도 및 갈색도를 측정하였다. 또한 제조된 참외 농축 음료를 저장하면서 미생물의 생육유무를 확인하기 위해 Petrifilm을 사용하여 미생물의 유무를 확인하였다. 참외식초/참외농축액을 이용한 참외농축음료를 제조하여 음료의 저장온도 및 저장시간에 따른 관능적인 특성 및 품질 특성을 모니터링하면서 저장성 실험을 통해 저장안전성을 평가한 결과 저장시간 및 저장온도에 따른 관능적인 색상은 1.6~4.0의 값을 나타내었으며, 향은 2.3~4.0의 값을 나타내었으며, 맛은 1.8~4.0의 값을, 전반적인 기호도는 2.1~4.0의 감을 나타내는 것으로 나타났다. 이화학적 품질 검사 결과, 색도L(백색도)값은 21.79~87.23, 색도 a(적색도)값은 -1.27~35.79의 값을 나타내었으며, 색도 b(황색도)값은 16.57~18.89의 값을 나타내었다. 갈색도는 0.386~3.214의 값을 나타내었으며, PH는 4.02~4.24의 값을 나타내었다. 일반미생물은 검사 결과 모든 조건에서 검출되지 않았다. 참외농축음료를 8$0^{\circ}C$에서 30분간 살균하여 미생물학적 품질 검사 결과 저장온도 및 저장시간에 따라 미생물이 검출되지 않았으며, 유통하기에 적합한 음료가 제조됨을 검증할 수 있었다.

  • PDF