• 제목/요약/키워드: 제온

검색결과 9건 처리시간 0.024초

제온 파이 x200 프로세서를 이용한 3차원 음향 파동 전파 모델링 병렬 연산 성능 비교 (Comparison of Parallel Computation Performances for 3D Wave Propagation Modeling using a Xeon Phi x200 Processor)

  • 이종우;하완수
    • 지구물리와물리탐사
    • /
    • 제21권4호
    • /
    • pp.213-219
    • /
    • 2018
  • 본 연구에서는 제온 파이 x200 프로세서를 이용하여 3차원 파동 전파 모델링을 수행하고 기존의 제온 CPU를 사용한 경우와 병렬 연산 성능을 비교하였다. 제온 파이 1세대 프로세서인 제온 파이 나이츠 코너 보조프로세서와 달리 제온 파이 2세대 프로세서인 x200 프로세서는 직접 운영체제 실행이 가능하므로 내장 메모리와 주메모리 사이의 추가적인 통신이 필요 없다. 또한 제온 파이 x200 프로세서는 대용량 주메모리와 고대역폭 메모리를 이용하여 대규모 컴퓨팅을 독립적으로 실행할 수 있다. 병렬 연산 성능 비교를 위해 MPI (Message Passing Interface)와 OpenMP (Open Multi-Processing)를 이용해 모델링을 수행하였다. SEG/EAGE 암염돔 모델을 이용한 수치 실험 결과 제온 파이에서 다량의 연산 코어와 고대역폭 메모리를 이용해 12 코어 CPU 대비 2.69 ~ 3.24배 우수한 모델링 성능을 얻을 수 있었다.

인텔 제온 파이를 활용한 푸아송 방정식 풀이의 병렬화 (Parallelization of Poisson equation solver on Intel Xeon Phi environment)

  • 조규남;서재민;김도형;류훈;정창성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.178-180
    • /
    • 2015
  • 코프로세서(Co-processor)를 사용한 병렬 처리 시스템은 멀티코어 프로그래밍과 함께 과학기술계산 분야 프로그램 개발에 많이 사용되고 있다. 본 연구에서는 CPU 기반의 코프로세서인 인텔 제온 파이 환경에서의 푸아송 방정식 해법을 병렬화 하였다. 본 연구를 통해서 인텔 제온 파이 활용 가능성을 확인 하고, 일반적인 병렬화 기법이 인텔 제온 파이 환경에서도 적합한지를 확인하였다.

퀀텀 에스프레소와 제온 파이 프로세서의 융합을 이용한 분산컴퓨팅 성능에 대한 연구 (A Study of Distribute Computing Performance Using a Convergence of Xeon-Phi Processor and Quantum ESPRESSO)

  • 박영수;박구락;김동현
    • 한국융합학회논문지
    • /
    • 제7권5호
    • /
    • pp.15-21
    • /
    • 2016
  • 최근 프로세서의 집적도는 급속도로 발전하고 있으나 클락 스피드는 증가하지 않는 대신에 프로세서 내의 코어 수가 늘어나고 있는 실정으로 프로그래밍 속도 향상을 위한 방법에 대한 연구가 필수적이라 할 수 있다. 이에 본 논문에서는 현재 연산 가속화를 위해 사용되는 매니 코어 프로세서의 대표적인 인텔 제온 파이의 성능 분석을 위하여 퀀텀 에스프레소를 활용하였다. 또한 제온 파이에서 MPI 실행시 랭크의 수를 변화시키면서 성능 벤치마킹을 수행하여 하드웨어적인 성능 특성을 연구하였다. 그 결과 물리 코어가 57개인 제온파이 프로세서의 하나의 코어당 4개의 작업을 처리할 때 가장 좋은 성능을 나타내고 있으며, 물리 코어 하나에 MPI 랭크수를 4개 이상 확장하면 성능향상이 거의 일어나지 않는다. 이러한 융합 기술을 통하여 퀀텀 에스프레소의 성능 향상과 제온 파이의 하드웨어적인 특성을 확인할 수 있다.

제온 파이 보조 프로세서를 이용한 3차원 주파수 영역 음향파 파동 전파 모델링 병렬화 (Parallelizing 3D Frequency-domain Acoustic Wave Propagation Modeling using a Xeon Phi Coprocessor)

  • 류동현;조상훈;하완수
    • 지구물리와물리탐사
    • /
    • 제20권3호
    • /
    • pp.129-136
    • /
    • 2017
  • 파형 역산 또는 역시간 구조 보정과 같은 3차원 탄성파 자료 처리를 위해서는 3차원 파동 전파 모델링과 그에 따른 대량의 수치 계산이 필요하다. 본 연구에서는 3차원 주파수 영역 파동 전파 모델링을 이용해 제온 파이 가속기와 서버용 고성능 CPU의 성능 및 정확성을 비교하였다. 시간 영역 유한 차분법 알고리즘에 제온 파이의 특징을 고려하여 OpenMP 병렬 프로그래밍을 적용하였다. 주파수 영역 파동장을 얻기 위해서는 시간 영역 모델링과 동시에 푸리에 변환을 수행하였다. 3차원 SEG/EAGE 암염돔 속도 모델을 사용하여 주파수 영역 파동장을 생성한 결과, 제온 파이를 이용해 정확한 주파수 영역 파동장을 CPU 대비 1.44배 빠르게 얻을 수 있었다.

폐타이어 유효자원에의 길

  • 대한타이어공업협회
    • 타이어
    • /
    • 통권52호
    • /
    • pp.6-8
    • /
    • 1974
  • 한때는 폐기물 즉 쓰레기로 취급되었든 타이어를 유효자원으로 재평가하여 자원화를 도모코저 하는 기술개발이 진척되고 있다. 일본 신소제강소에선 이미 실용 프란트화에 성공하고 또 일본 제온에서도 모델 프란트를 착수하고 있다. 이렇게 되면 소각한다든가, 15㎝ 이하로 파쇄해서 매립한다는 것은 자원을 낭비한다고 하지 않을 수 없다. 그래서 금번은 이 쓰레기로부터 자원으로 전환하는 폐타이어 대책의 동향을 추구해보았다.

  • PDF

인텔 MKL 라이브러리를 이용한 Xeon Phi Coprocessor 벤치마크 (Benchmarking the Intel Xeon Phi Coprocessor with Intel MKL library)

  • 박영수;박구락;김진묵
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제50차 하계학술대회논문집 22권2호
    • /
    • pp.1-4
    • /
    • 2014
  • 인텔 Many Integrated Core (MIC) 아키텍쳐는 61개의 코어가 하나의 칩에 결합되어 있다. Xeon Phi 로 명명된 인텔 MIC는 인텔 E5 Xeon CPU 보다 2배의 single precision GFLOPs 성능을 제공한다. 인텔 MIC 는 수치연산에 최적화 되어 있는 아키텍쳐이다. 우리는 Xeon Phi 7120P를 가지고 벤치마킹을 하였고 클락스피드 1.238GHz, 61Core 이고 한 개의 코어당 4쓰레드를 사용하며 이론상 최고 성능은 Peak Double Precision(GFLOP)는 약 2-TFlops 이다. 이에 우리는 인텔 X86 아키텍쳐에서 openMP 와 인텔 MKL(Math kernel library) 라이브러리를 이용한 병렬프로그램을 작성하여 쓰레드 수를 증가 시키면서 인텔 Xeon Phi 와 E5 Xeon CPU에서 single precision 성능을 벤치마킹 하여, Xeon Phi 와 Xeon E5 의 이론적인 성능을 비교해 보고자 한다. 또한 openMP와 인텔 MKL라이브러리를 사용한 병렬환경에서 CPU의 성능 지표인 클락스피드와 코어수 외에 Vector unit size 의 크기가 성능에 어떤 영향을 미치는지 살펴보았다.

  • PDF

PTAM을 위한 제온파이 기반 하둡 분산 스트림 프로세싱 시스템 (Distributed Stream Processing System with apache Hadoop for PTAM on Xeon Phi Cluster)

  • 서재민;조규남;김도형;정창성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.184-186
    • /
    • 2015
  • 본 논문에서는 PTAM을 위한 새로운 분산 스트림 프로세싱 시스템을 제안한다. PTAM은 하나의 시스템에서 동작하도록 설계되었다. 이는 PTAM이 가지고 있는 한계점을 말해주는 부분인데, PTAM은 Bundle Adjustment의 계산 부하가 커지는 경우에 map을 구축하는데 있어 많은 시간과 리소스가 필요하다. 이에 하둡을 통해 계산 부하를 분산하고, PE(Processing Element)를 Xeon phi 시스템을 통해 동작되는 시스템을 제안한다.

북방전복, Haliotis discus hannai 3배체의 세포유전학적 연구 (Cytogenetic Analysis of the Triploid Pacific Abalone, Haliotis discus hannai)

  • 지영주;장영진
    • 한국패류학회지
    • /
    • 제28권1호
    • /
    • pp.37-43
    • /
    • 2012
  • 북방전복, Haliotis discus hannai의 3배체를 제온자극으로 유도하고 부화유생인 trochophore를 이용하여 염색체 표본을 만들었고, 유도된 3배체와 정상 2배체 북방전복은 실내 유수식의 동일 환경에서 51개월 동안 사육되었으며 채취된 혈구를 채취하여 DNA 함량 측정에 사용되었다. 2배체 및 유도된 3배체의 염색체 수를 조사한 결과, 2배체 염색체 수는 2n = 36으로 나타났고, 3배체의 경우에는 3n = 54로 나타나 3배체는 2배체에 비해 1.5배의 염색체 수를 나타내었다. Flow cytometry로 인간의 백혈구를 control로 하여 북방전복의 DNA 함량을 측정한 결과, 북방전복의 DNA 함량은 1.743 pg/cell이었으며 3배체 북방전복의 DNA함량은 2배체 전복의 1.49배의 DNA 함량을 나타내어 3배체 특성인 모계 2n DNA 함량과 부계 n DNA함량을 나타내었다.

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.