• Title/Summary/Keyword: 제염기술

Search Result 127, Processing Time 0.026 seconds

초임계 이산화탄소를 이용한 방사성 오염물의 청정제염기술

  • Park, Gwang-Heon;Kim, Hak-Won
    • Journal of the KSME
    • /
    • v.55 no.7
    • /
    • pp.42-45
    • /
    • 2015
  • 초임계 이산화탄소는 환경친화적 유체로서 많은 장점을 갖고 있고, 기화시켜 재사용할 경우 2차 폐기물의 발생이 없는 우수한 용매이다. 이 글에서는 초임계 이산화탄소를 이용하여 방사성 오염물을 제염(除染, decontamination)하는 기술을 소개하고자 한다.

  • PDF

PFC 분사 제염기술 실증

  • Won, Hwi-Jun;Kim, Jin-Won;Choe, Wang-Gyu;Jeong, Jong-Heon;Park, Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2006.11a
    • /
    • pp.39-40
    • /
    • 2006
  • PDF

A Study on the Decontamination of Cs-137 and Sr-90 Contained in the Liquid Radioactive Waste Discharged from the Spent Fuel Storage Tank Using Microalgae (미세조류를 이용한 사용후핵연료 저장조에서 배출되는 방사성 폐액에 함유된 Cs-137 및 Sr-90 제염에 관한 연구)

  • Kim, Tae Young;Park, Hye Min;Song, Yang Soo;Lee, Un Jang
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.20-25
    • /
    • 2022
  • In this study, the applicability of microalgae was evaluated for eco-friendly decontamination of cesium-137 (Cs-137) and strontium-90 (Sr-90), which are radioactive nuclides contained in radioactive waste. The monolithic radioactive solution used in the experiment was manufactured at a concentration of 1.5 Bq/mL Cs-137 and 1.0 Bq/mL Sr-90 by diluting a standard radioactive solution and distilled water. This experiment used two types of microalgae, Chlorella Vulgaris was used for Sr-90 decontamination and Hematococcus pluvialis for Cs-137 decontamination. The experimental method is to put the microalgae cultured for 2 weeks into a bottle with a semi-permeable membrane, and then put the bottle in which the microalgae was put into the manufactured radioactive solution, so that the microalgae and the radioactive solution react through the semi-permeable membrane for 48 hours. For the radioactivity concentration analysis of each sample, a gamma-ray nuclide analyzer was used for Cs-137, a γ-ray isotope, and a Liquid Scintillation Count(LSC) was used f or Sr-90, a β-ray isotope. As a result of the experiment, it was confirmed that about 88.0 % of Cs-137 and about 89.7 % of Sr-90 could be decontaminated, and about 98.6 % of Sr-90 was finally able to be decontaminated by the two-stage decontamination method.

Study on the Synthesis Method of Simulated CRUD for Chemical Decontamination in NPPs (원전 화학제염을 위한 모의크러드 제조방법 연구)

  • Kang, Duk-Won;Kim, Jin-Kil;Kim, Kyeong-Sook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • As nuclear power plants are getting older, interests on a decontaminating process are increasingly attracting more attention. Chemical decontamination is crucial to lower the production of radioactive waste and radiation dose rate. Prior to this, oxidizers and detergents for target material should be chosen so as to decontaminate major systems and components of a nuclear power plant chemically. In order to decontaminate it properly, it is crucial to have information about the chemical composition and crystalline structure of CRUD, analyzing its samples from the target or the decontamination system with components. However, there is no program which enables the extraction of samples directly from the object or the decontamination system with components carrying genuine radioactivity. Therefore, it is limited to samples from corrosion products carrying partial radioactivity as a resource. The composition of CRUD varies considerably depending on refueling cycle because it is closely related to the constituent of basic material. After settling a target, it is crucial to analyze and obtain analytical information about CRUD as a decontamination target. In this paper, various technologies for manufacturing simulated CRUD are introduced as alternatives to unattained samples. A metal oxide or metal hydroxide was used to synthesize simulated cruds having chemical compositions and crystalline stricture similar to the actual one by 12 different methods. CRUD 4(metal oxides in the autoclave vessel) and CRUD 10(metal oxides in a crucible after hydrazing pretreatment)were chosen as the best method for Type 1 and Type 2.respectively. As these CRUD can be synthesized easily without using any specialized equipment or reagents in a short time and in large quantities, they are expected to stimulate the development of decontaminating agents and processes.

Trends in Technology Development for the Treatment of Radioactive Concrete Waste (방사성 콘크리트 폐기물의 국내외 처리기술 개발 동향)

  • Lee, Keun-Young;Oh, Maengkyo;Kim, Jimin;Lee, Eil-Hee;Kim, Ik-Soo;Kim, Kwang-Wook;Chung, Dong-Yong;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.93-105
    • /
    • 2018
  • In Korea, a huge amount of radioactive concrete waste will be generated through decommissioning of nuclear facilities in the near future; therefore, optimum technology for the treatment of concrete waste should be reviewed thoroughly and the future direction of technology development should be discussed. In this paper, many domestic and foreign examples of generation of radioactive concrete waste were pieced together and the characteristics of radioactive concrete waste were examined. Moreover, we reviewed trends in technology development by analyzing the examples of various studies and practical applications of treatment technologies, such as mechanical decontamination, chemical decontamination, volume reduction, recycling and solidification, and also tried to understand the limitations of existing technologies and determine a direction for technical improvement.