• Title/Summary/Keyword: 제어 조건

Search Result 3,613, Processing Time 0.033 seconds

The Processing control of NiCuZn Ferrite (I) - Mixing and Size Reduction of Raw Materials by Wet Ball Milling. (NiCuZn Ferrite의 제조공정 제어 (제1보) - 습식 볼밀링에 의한 다성분 원료의 혼합 및 분쇄 공정의 고찰)

  • 류병환;김선희;최경숙;고재천
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.928-936
    • /
    • 1995
  • In this research, the processing control of NiCuZn Ferrite has been developed. The mixing and the size reduction of raw materials have been proceeded. In order to produce NiCuZn Ferrite, highly concentrated slurry with fixed ratio and wet ball milling were used. First, the dispersion behavior of raw mixture at the region of pH4~pH11 has been studied. Using wet ball milling operation, the best conditions of mixing and size reduction have been determined. Further more, the most suitable conditions, such as, dispersant kind, dispersant amount, milling time, and slurry concentration have been studied. The poly acrylic ammonium salt (PAN) was chosen as a suitable dispersant to have effective dispersion in basic region. The slurry of raw mixture without dispersant, showed high viscosity and poor grindability. As 0.7 wt% of PAN was added, the concentrated slurry (up to 55 vol%) was possible, and showed well grindability. After 18 h ball milling of 30 vol% of mixture slurry with 0.7 wt% of PAN, the average particle size and specific surface area of raw mixture were $0.54\mu\textrm{m}$ and $12.92m^{2}/cc$, respectively. The ball milled raw mixture, calcined at $700^{\circ}C$ for 3h, was totally changed into NiCuZn Ferrite with spinel phase.

  • PDF

A Study on HILS for Performance Analysis of Airborne EOTS for Aircraft (항공기용 EOTS 성능분석을 위한 HILS시스템 구축에 관한 연구)

  • Chun, Seungwoo;Baek, Woonhyuk;La, Jongpil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.55-64
    • /
    • 2013
  • In this paper, the HILS (Hardware In-the-Loop Simulation) system to analyze and to verify the performance of the targeting pod is addressed. The main functions of the targeting pod is acquiring and tracking targets to guide a LGB (Laser Guided Bomb) to the targets. For the analysis of targeting pod, the real time simulate images generation of IR and daylight cameras, sever control technology, and the analysis of laser transfer characteristics are necessary. For the real time image generation and the laser transfer characteristics analysis, off-the-shelf SDK(Software Development Kit) OKTAL-SE is used. For the servo controller, well-proven mechanism in the previous program is applied to increase servo control accuracy. To analyze the performance of a targeting pod in a realistic environment, 1553B, ARINK818 interface and etc. which are actually implemented in real combat aircrafts are applied in the system. By using the developed HILS system, the performance of currently operating targeting pods in real combat aircrafts can be analyzed and predicted. Additionally, the relationship between overall system performance and each module performance can be analyzed, the currently developed HILS system is expected to be a very useful tool to generate system development requirements of targeting pods and to reduce any possible future development risks.

A Study on the Build of Equipment Predictive Maintenance Solutions Based on On-device Edge Computer

  • Lee, Yong-Hwan;Suh, Jin-Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.165-172
    • /
    • 2020
  • In this paper we propose an uses on-device-based edge computing technology and big data analysis methods through the use of on-device-based edge computing technology and analysis of big data, which are distributed computing paradigms that introduce computations and storage devices where necessary to solve problems such as transmission delays that occur when data is transmitted to central centers and processed in current general smart factories. However, even if edge computing-based technology is applied in practice, the increase in devices on the network edge will result in large amounts of data being transferred to the data center, resulting in the network band reaching its limits, which, despite the improvement of network technology, does not guarantee acceptable transfer speeds and response times, which are critical requirements for many applications. It provides the basis for developing into an AI-based facility prediction conservation analysis tool that can apply deep learning suitable for big data in the future by supporting intelligent facility management that can support productivity growth through research that can be applied to the field of facility preservation and smart factory industry with integrated hardware technology that can accommodate these requirements and factory management and control technology.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

ICT Convergenced Cascade-type Incubator for mass production of microalgae (미세조류 대량생산을 위한 ICT 융합 계단식 연속 배양 장치)

  • Lee, Geon Woo;Lee, Yong Bok;Yoo, Yong Jin;Baek, Dong Hyun;Kim, Jin Woo;Kim, Ho Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.379-386
    • /
    • 2021
  • This study was undertaken to develop a cascade-type continuous culture system (CCCS) that combines both ICT and biotechnology (BT), for the mass production of microalgae. This system is capable of maintaining the essential culture conditions of pH, temperature, carbon dioxide, and illuminance control, which are key parameters for the growth of microalgae, and is economical for producing microalgae regardless of the season or location. It has the added advantage of providing stable and high productivity. In the current study, this system was applied to culture microalgae for 71 days, with subsequent analysis of the experimental data. The initial O.D. of the culture measured from incubator 1 was 0.006. On the 71st day of culture, the O.D.s obtained were 0.399 (incubator 1), 0.961 (incubator 2), 0.795 (incubator 3), and 0.438 (incubator 4), thereby confirming the establishment of continuous culture. Thus, we present a smart-farm based on ISMC (in-situ monitoring and control) for a mass culture method. We believe that this developed technology is suitable for commercialization, and has the potential to be applied to hydroponics-based cultivation of microalgae and cultivation of high-value-added medicinal plants as well as other plants used in functional foods, cosmetics, and medical materials.

Comparion of Rockwool, Reused Rockwool and Coir Medium on Tomato (Solanum lycopersicum) Growth, Fruit Quality and Productivity in Greenhouse Soilless Culture (시설 내 수경재배에서 암면, 재사용암면, 코이어 배지에 따른 토마토의 생육 및 생산성 비교)

  • An, Cheol Bin;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • This experiment was conducted to find out the possibility of use of reused rockwool and comparison of growth, productivity and quality of tomatoes according to the use of rockwool and coir medium. The experiment was conducted in an automatic controlled greenhouse at Andong National University, College of Life Science, located in Andong, Gyeongsangbuk-do.. As a result of the experiment, there was no difference in the number of leaves, plant height, and leaf area between treatments, and the crown diameter was slightly higher in rockwool medium, also there was no difference between reused rockwool and coir medium. Fruit productivity showed different responses depending on the cultivation environment, but there was no significant difference between rockwool, reused rockwool and coir medium. In addition, the quality of fruit was observed to be different according to the concentration of EC in the medium. Therefore, in tomato hydroponic cultivation, there was no difference in the type of medium in growth, productivity, fruit quality and the environmental and water management had a great effect, and it is expected that the reuse of rockwool will have a positive effect on the economic point of view.

A Study on Operation Method of Protection Device for LVDC Distribution Feeder in Light Rail System (경전철용 LVDC 배전계통의 보호기기 운용 방안에 관한 연구)

  • Kang, Min-Kwan;Choi, Sung Sik;Lee, Hu-Dong;Kim, Gi-Yung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.25-34
    • /
    • 2019
  • Recently, when a fault occurs at a long-distance point in a LVDC (low voltage direct current) distribution feeder in a light rail system, the magnitude of the current can decrease to less than that of the load current of a light rail system. Therefore, proper protection coordination method to distinguish a fault current from a load current is required. To overcome these problems, this paper proposes an optimal algorithm of protection devices for a LVDC distribution feeder in a light rail system. In other words, based on the characteristics of the fault current for ground resistance and fault location, this paper proposes an optimal operation algorithm of a selective relay to properly identify the fault current compared to the load current in a light rail system. In addition, this paper modelled the distribution system including AC/DC converter using a PSCAD/EMTDC S/W and from the simulation results for a real light rail system, the proposed algorithm was found to be a useful and practical tool to correctly identify the fault current and load current.

Microbial Activity Analysis for the Selectively Sterilizing of Government-controlled Bulk Public Archives (대량 공공 기록물의 선별적 소독을 위한 미생물 활성도 분석 연구)

  • Kim, Dae Woon;Park, Ka Young;Kim, Ji Won;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.443-458
    • /
    • 2018
  • An archive is a collection of documents or records. Currently, most archived documents are made of paper. Paper is susceptible to biological damage and deterioration due to its material properties. To control the biological damage, treatment with chemical disinfectants and control of the storage environment are often used. In government-controlled bulk public archives, all documents are chemically sterilized before storage. However, an extremely large quantity of public records have been produced, and storage space and conservation management are gradually reaching their limits. In this study, 60 species of microbes were identified using a genetic method. We successfully applied the adenosine triphosphate (ATP) bioluminescence method to detect microbial contamination on paper documents. A calibration curve of the ATP bioluminescence as a function of the microbe quantity was obtained, and the microbial activity on non-sterilized paper archives from 1951 was analyzed using an ATP luminometer. It was found that the microbial activity was suppressed or reduced in climate-controlled storage environments at $22^{\circ}C$ and 55% relative humidity. We anticipate that these results will be used to establish selective sterilization systems for government-controlled bulk public archives.

Preparation and Characterization of Reduced Iron by Using Wastes as Auxiliary Fuels (폐기물을 보조연료로 이용한 환원철 제조 및 환원거동 분석)

  • Je, Hyun-Mo;Kim, Kyoung-Seok;Chu, Yong-Sik;Roh, Dong-Kyu
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • In this study, the wastes were used as fuels for direct reduction iron (DRI) production to reduce production cost and recycle the wastes. We examined the effects of wastes on the reduction behavior of DRI manufacture and the possibility of using wastes as auxiliary fuels. The proximate and Ultimate analysis were carried out to confirm the properties of wastes as fuels, and high-quality reduced irons were fabricated by using the waste as an auxiliary fuel. The metallization of reduced irons increased as the calorific value increase of auxiliary fuel. Especially, the reduced irons fabricated from the waste tires and vinyl plastics which had high heat energy and volatile matters showed higher metallization than the others. The high calorific value and volatility of waste were significant properties as fuel. The high quality DRI could be fabricated with wastes as auxiliary fuels through optimization of reaction conditions.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.