• Title/Summary/Keyword: 제어체적

Search Result 176, Processing Time 0.023 seconds

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.

Shape Design of Heat Dissipating Flow Control Structure Within a DVR using Parametric Study (매개변수 연구 기법을 이용한 DVR 내부 방열 유동제어 구조물의 형상 설계)

  • Jung, Byeongyoon;Lee, Kyunghoon;Park, Soonok;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.165-171
    • /
    • 2018
  • In this study, the shape of the flow control structure within a DVR was designed for heat dissipation of the CPU. The proposed design consists of three thin metal plates, which directly controls the air flow inside the DVR box and forces the air to pass through the CPU, thereby efficiently dissipating heat from the CPU. The shape of the structure was determined using parametric studies. To verify the design result, we carried out a three-dimensional time dependent numerical analysis using a commercial fluid dynamics analysis package FlowVision. As a result of experiments with a real DVR equipment, it is confirmed that the temperature of the CPU is significantly reduced compared to the initial model.

Control of Supersonic Cavity Flow Oscillation Using Passive Means (피동제어법을 이용한 초음속 공동유동의 진동 제어)

  • Lee, Young-Ki;Deshpande, Srikanth;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.363-366
    • /
    • 2006
  • The effectiveness of two passive control techniques for alleviating the pressure oscillation generated in a supersonic cavity flow is investigated numerically. The passive devices suggested in the present research include a triangular bump and a sub-cavity installed near the upstream edge of a rectangular cavity. The supersonic cavity flow characteristics are examined by using the three-dimensional, unsteady Wavier-Stokes computation based on a finite volume scheme. Large eddy simulation (LES) is carried out to properly predict the turbulent features of cavity flow. The results show that the pressure oscillation near the downstream edge dominates overall time-dependent cavity pressure variations. Such an oscillation is attenuated more considerably using the sub-cavity compared with other methods, and a larger sub-cavity leads to better control performance.

  • PDF

로터스 금속의 제조 기술 및 응용

  • Hyeon, Seung-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.57.1-57.1
    • /
    • 2012
  • 금속을 용해 응고시킬 때 생성되는 소위, 주조 결함이나 소결금속 내의 기공은 재료의 성능이나 강도를 현저하게 낮추는 결함으로서 예전부터 기피되어 왔다. 또한, 재료공정에 있어서도 여하의 기공이나 기포가 없는 치밀한 고강도 및 고기능성 재료를 개발하는 것에 최대한의 주의와 관심을 기울여 왔다. 반면에 자연계의 천연물이나 인공물을 둘러보면 그 대부분이 다공질임을 쉽게 눈치챌 수 있다. 예를 들어 목재, 지엽 등의 생물을 시작해서 콘크리트 등의 인공물, 우리 체내의 뼈도 전형적인 다공질구조로 구성되어 있다. 이러한 구조로부터 재료의 재질제어 이외에 구조제어라는 새로운 어프로치를 고려할 수 있고, 최근 들어, 금속재료에 있어서도 이러한 다공질 구조에 관한 연구가 활성화되어 충격흡수재, 생체재료, 베어링재료 등의 다양한 응용이 전개되고 있다. 원주상의 방향성 기공을 갖는 로터스 금속의 제조 원리는 용융금속의 높은 가스용해도와 고체금속의 낮은 가스고용도의 차이를 이용하여 응고할 때 고용되지 않는 가스원자가 기포를 형성시키는 것이다. 수소용해도는 모든 금속에 있어서 온도상승에 따라 증가하지만 융점에 있어서 용해도의 불연속적 증가를 나타내며 응고할 때 고액계면에서 다량의 가스를 방출하고 기공 생성을 야기한다. 특히, 고 액상에 있어서 수소용해도 차가 큰 마그네슘, 니켈, 철, 동 등은 기포를 생성하기 쉽다. 또한 기공의 배열구조를 제어하기 위해 일방향응고법를 이용하여 기공에 방향성을 부여한다. 외관상 기공구조가 연근뿌리를 닮은 것으로 부터 로터스 금속이라는 명칭이 널리 알려져 있다. 이와 같은 제조방법에 의해 로터스 금속은 기공 방향, 기공크기, 기공률을 자유롭게 제어할 수 있고 우수한 기계적 성질이 기존의 발포금속, 소결금속과 전혀 다른 특성을 가지고 있다. 이러한 기공구조는 용해온도, 응고속도, 분위기 가스압, 불활성가스와의 혼합체적비 등의 제어를 통해서 조절할 수 있다. 이와 같이 제조한 방향성 다공질금속은 BT (인플란트, 생체적합성, 저탄성, 경량), ST (초음속기엔진부품, 경량), IT (고성능수냉모듈), ET(고온촉매, 필터)의 분야로의 응용을 기대한다.

  • PDF

Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites (재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Hwang-Hee;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • The main objective of this study was to evaluate the effect of recycled PET fiber made from waste PET bottle on the control of plastic shrinkage cracking of cement based composites. PET is blown as a plastic material and used in a variety products such as a beverage bottle. However, waste PET bottles are thrown after the usage, raising huge problems in terms of the environment. Thus, the research on the method to recycle the PET bottles indicates important aspects in environment and economy. The method to recycle waste PET bottles as a reinforcing fiber for cement based composites is one of effective methods in terms of the recycle of waste PET bottles. In this research, the effect of recycled PET fiber geometry and length on the control of plastic shrinkage was examined through thin slab tests. A test program was carried out to understand the influence of fiber geometry, length and fiber volume fraction. Three type of recycled PET fibers including straight, twist crimped and embossed type. Three volume fraction and two fiber length were investigated for each of the three fiber geometry. Test results indicated that recycled PET fibers are effective in controlling plastic shrinkage cracking in cement based composites. In respect to effect of length of fiber, longer fiber was observed to have efficient cracking controlling with low volume fraction in same fiber geometry while shorter fiber controled plastic shrinkage cracking efficiently as addition rate increase. Also, embossed type fibers were more effective in controlling plastic shrinkage cracking than other geometry fiber at low volume fraction. But, for high volume fraction, straight type fibers were most effective in plastic shrinkage cracking controlling in cement based composites.

The Froude Scaling Study on the Ventilation of Non-isothermal Concentrated Fume from the Semi-closed Space (반밀폐형 공간에서 비등온 고농도 연무의 배연산출량 산정을 위한 Froude 상사연구)

  • Chang, Hyuk-Sang;Choi, Byung-Il;Park, Jae-Cheul;Kim, Myung-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.877-885
    • /
    • 2005
  • The Froude scaling between the prototype and the model was tried to estimate the necessary ventilation rate for non-isothermal concentrated fume from the semi-closed inner space. Based on the non-dimensional similitude equations derived from the Zukoski plume rise analysis, the scaling experiments were done to verify the relationship of the non-dimensional energy release rate and the non-dimensional mass flow rate by using two different scaled volume models, model A ($1\;m{\times}1\;m{\times}1\;m$) and model B ($0.5\;m{\times}0.5\;m{\times}0.5\;m$). The experimental results showed that the theoretical similitude between the models is acceptable for the prediction of ventilation rate of the concentrated fume. The maximum energy release rate used for the experiments was $20\;kW/m^3$. In the experimental range, the similitude between the energy release rate and the ventilation mass flow rate was well defined and the necessary ventilation rates were 20-30% higher than the stoichiometric ventilation mass flow rate. Based on results of current study, the design of the local air ventilation system can be improved by correcting the effects of buoyancy and diffusion of the non-isothermal concentrated fume.

Residual Stresses Analysis due to Volumetric Changes in Long-term Autogenous Expansive Concrete (장기팽창성 콘크리트의 체적변화에 의한 잔류응력 해석)

  • Cha, Soo-Won;Jang, Bong-Seok;Oh, Byung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.617-625
    • /
    • 2009
  • This study is devoted to the problems of thermal and autogenous expansion stresses in order to avoid cracking using chemically prestressing method. The chemical prestress can be induced by autogenous expansion characteristics of MgO concrete made in specific burning temperature. The volume change induced cracking has great influence on the long-term durability and serviceability. To evaluate risk of cracking, the computer programs for analysis of thermal and autogenous expansion stresses were developed. In these 3-D finite element procedures, long-term autogenous expansive deformation is modeled and its resultant stress is calculated and then verified by comparison with manual calculation results. In this study, the stress development is related to thermal and autogenous expansive deformation. Using the developed program, residual stresses of MgO concrete were compared and analysed in the example From the numerical results it is found that long-term, and temperature dependent expansive concrete with light-burnt MgO is most effective in controlling the risk of cracking of mass concrete because it has high temperature for long period. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and autogenous expansion stresses in mass concrete structures with lightly burnt MgO.

3-Dimensional Conformal Radiation Therapy in Carcinoma of The Nasopharynx (비인강암의 3차원 입체조형치료에서 등가선량분포에 관한 연구)

  • Keum Ki Chang;Kim Gwi Eon;Lee Sang Hoon;Chang Sei Kyung;Lim Jihoon;Park Won;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.399-408
    • /
    • 1998
  • Purpose : This study was designed to demonstrate the potential therapeutic advantage of 3-dimensional (3-D) treatment planning over the conventional 2-dimensional (2-D) approach in patients with carcinoma of the nasopharynx. Materials and Methods : The two techniques were compared both qualitatively and quantitatively for the boost portion of the treatment (19.8 Gy of a total 70.2 Gy treatment schedule) in patient with T4. The comparisons between 2-D and 3-D plans were made using dose statistics, dose-volume histogram, tumor control probabilities, and normal tissue complication probabilities. Results : The 3-D treatment planning improved the dose homogeneity in the planning target volume. In addition, it caused the mean dose of the planning target volume to increase by 15.2$\%$ over 2-D planning. The mean dose to normal structures such as the temporal lobe, brain stem, parotid gland, and temporomandibular joint was reduced with the 3-D plan. The probability of tumor control was increased by 6$\%$ with 3-D treatment planning compared to the 2-D planning, while the probability of normal tissue complication was reduced. Conclusion : This study demonstrated the potential advantage of increasing the tumor control by using 3-D planning. but prospective studies are required to define the true clinical benefit.

  • PDF

A Study on the Supersonic Flow Characteristics Through a Dual Throat Nozzle (이중목 노즐에서 발생하는 초음속유동 특성에 관한 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze a fundamental performance of a dual throat nozzle(DTN) at various nozzle pressure ratios(NPR) and throat area ratios. Two-dimensional, axisymmetric, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. NPR was varied in the range of NPR from 2.0 to 10.0, at different throat area ratios. The present computational results were validated with some experimental data available. Based upon the present results, the performance of DTN is discussed in terms of the discharge coefficient and thrust efficiency.