• Title/Summary/Keyword: 제어봉구동장치

Search Result 95, Processing Time 0.038 seconds

Improving Stability of Motor Generator Set of the Power Supply System for CEDM in Korean Standard Nuclear Power Plants (한국표준형 원전 제어봉구동장치 전원공급계통의 전동발전기 세트 안정성 개선)

  • Choi, Il Young;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • This paper analyzed a root cause of abnormality in the temperature and vibration at generator-side bearing of motor generator set (MG Set), which is a power supply system to control element drive mechanism (CEDM) of nuclear power plants (NPPs), and modified the design of roller-type and sealing method to improve the abnormalities. From the inspection of MG Set and analysis of temperature variation during service, it was found that the abnormal temperature transition was basically associated with original design of generator-side bearing, whose roller was axially restrained by inner race, and that the abnormal vibration level was caused by inserting small chips of cage and V-ring, which were generated due to the abnormal temperature transition at roller bearing. Type of bearing and sealing method were modified based on these analyses. The temperature and vibration level measured at roller bearing showed that the modifications clearly improved the operational stability of MG Set.

Crack analysis of mis-matched welding at CRDM(control rod drive mechanism) upper penetration nozzles of RPV(reactor pressure vessel) considering the change of mechanical properties (기계적 물성 변이를 고려한 원자로 압력용기(RPV : reactor pressure vessel) 상부 제어봉 구동 장치(CRDM : control of rod diver mechanism) 관통 노즐 이종재 용접부의 균열해석)

  • Lee, Yong-U;Kim, Jong-Seong;Lee, Gang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.241-243
    • /
    • 2005
  • PDF

Optimal Design of CEDM considering the Dynamic Characteristics (제어봉 구동장치의 동적 특성을 고려한 최적설계)

  • 김인용;진춘언
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • The dynamic characteristics of Control Element Drive Mechanism(CEDM) for Korea Standard Nuclear Power Plant are studied with the CEDM modeled as a secondary mass in a simplified two degree of freedom system, while the reactor vessel as a primary mass. The optimal .mu.-f curve is developed to reduce the response amplitudes of both primary and secondary masses. In order to improve a design it is proposed that the natural frequency ratio, f, should be converged to 0.93, the mass ratio, .mu., should not be reduced, and the result should be converged to the optimal .mu.-f curve. Optimal design for CEDM components has been carried out and the response amplitude ratios of reactor are reduced 10.5 - 19.7% while those of CEDM are reduced 6.3 - 3.4%.

  • PDF

Performance Qualification Test of the CRDM for JRTR (요르단 연구용원자로 제어봉구동장치의 성능검증시험)

  • Choi, M.H.;Cho, Y.G.;Kim, J.H.;Lee, K.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.807-814
    • /
    • 2015
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The top-mounted CRDM for Jordan Research and Training Reactor(JRTR) with 5 MW power has been designed and fabricated based on the HANARO's experience through KAERI and DAEWOO consortium project. This paper describes the performance qualification test results to demonstrate the operability of a prototype and four production CRDMs during the reactor lifetime. The driving performance, the drop performance and the endurance tests for CRDM are carried out at a test rig simulating the actual reactor conditions. A vibration of internal components due to the coolant flow is also measured using a laser vibrometer. As a result, the CRDMs are driven having a good driving performance without a malfunction between command and output signals for the stepping motor. Also, the pure drop time and the impact acceleration are within 0.72 s and 4.2 g to meet the design requirements, and the vibrational displacement of control rod is measured as maximum $5.2{\mu}m$.

Study on Magnetic Property for Test Coil and Permanent Magnet (Test Coil과 영구자석의 자기 특성 연구)

  • Park, Yun Bum;Kim, Jong Wook;Lee, Jae Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.5
    • /
    • pp.154-158
    • /
    • 2016
  • A CRDM (Control Rod Drive Mechanism) is an electromagnetic device which drives a control rod assembly linearly to regulate the reactivity of a nuclear core. An RPIS (Rod Position Indication System) is used as a position indicator for a control rod assembly of a CRDM of SMART, and an RPIS consists of permanent magnets and reed switches. SMART is designed for the maximum coolant temperature of $350^{\circ}C$, and the permanent magnets are installed inside of the reactor. The reed switches and electrical circuit are installed outside of the reactor on the other hand. Test coil for a reed switch is test equipment for quality verification of a reed switch, and a test coil consists of a coil and core. In this study, magnetic property of test coil and permanent magnet on a reed switch is compared by using finite element electromagnetic simulation.

The Design, Fabrication and Characteristic Experiment of Electromagnet for SMART Control Element Drive Mechanism (일체형원자로 제어봉구동장치에 장착되는 전자석의 설계 및 특성해석)

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.705-707
    • /
    • 2001
  • This paper describes the finite element analysis(FEA) for the design of electromagnet for SMART CEDM and compared with the lifting power characteristics of prototype electromagnet. As a result, it is shown that the characteristics of prototype electromagnet have a good agreement with the results of FEA.

  • PDF

Development of Position Indicator for System-Integrated Reactor SMART (일체형원자로 SMART의 제어봉 위치지시기 개발)

  • Yu, Je-Yong;Kim, Ji-Ho;Huh, Hyung;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.921-926
    • /
    • 2001
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. In this study, a thorough investigation on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. A design of the control rod position indication system using reed switch for the CEDM on the system-integrated reactor SMART was developed based on the position indicator technology identified through the investigation. The feasibility of the design was evaluated by test of manufactured control rod position indicator using reed switch for SMART.

  • PDF

Effects of Repair Weld of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzle on J-Groove Weldment Using Finite Element Analysis (유한요소법을 이용한 원자로 상부헤드 CRDM 관통노즐 J-Groove 보수용접 영향 분석)

  • Kim, Ju Hee;Yoo, Sam Hyeon;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.637-647
    • /
    • 2014
  • In pressurized water reactors, the upper head of the reactor pressure vessel (RPV) contains numerous control rod drive mechanism (CRDM) nozzles. These nozzles are fabricated by welding after being inserted into the RPV head with a room temperature shrink fit. The tensile residual stresses caused by this welding are a major factor in primary water stress corrosion cracking (PWSCC). Over the last 15 years, the incidences of cracking in alloy 600 CRDM nozzles have increased significantly. These cracks are caused by PWSCC and have been shown to be driven by the welding residual stresses and operational stresses in the weld region. Various measures are being sought to overcome these problems. The defects resulting from the welding process are often the cause of PWSCC acceleration. Therefore, any weld defects found in the RPV manufacturing process are immediately repaired by repair welding. Detailed finite-element simulations for the Korea Nuclear Reactor Pressure Vessel were conducted in order to predict the magnitudes of the repair weld residual stresses in the tube materials.