• Title/Summary/Keyword: 제어된 환경에서 농업

Search Result 215, Processing Time 0.032 seconds

Design and Performance Evaluation of the IoT-based Smart Breeding System for Protaetia Brevitarsis Seulensis (IoT 기반 흰점박이꽃무지 스마트 사육사 설계 및 성능평가)

  • Won, Jin-Ho;Kwak, Kang-Su;Rho, Si-Young;Lee, Sang-Gyu;Choi, In-Chan;Lee, Jae-Su;Kim, Tae-Hyun;Baek, Jeong-Hyun;Seok, Young-Seek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.575-576
    • /
    • 2020
  • 본 논문은 근래에 식용곤충 식품에 대한 수요 및 국민적 관심이 증가하여 관련 산업이 급격히 성장하고 있는 가운데, 건강기능성 효과가 널리 알려진 흰점박이꽃무지 유충의 안정적인 생산량 확보를 위한 스마트 사육사를 제작하고 그 성능을 평가한 결과이다. 사육사는 L6m×W3m×H2.8m 크기로 제작하였으며, 안정적인 사육환경을 위하여 사육실과 공조실을 분리하여 설계하였다. 공시재료는 생후 15일이 경과된 흰점박이꽃 무지 유충 1령이며, 스마트 사육사 내 사육환경은 온도 25±2℃, 습도 65±5%로 제어하였다. 사육조사는 매주 1회, 유충의 체중, 길이, 두께를 측정하였으며, 스마트 사육사의 성능평가를 위해 일반 사육농가(전북 소재)와 비교·분석하였다. 사육 4주 후 조사 결과, 스마트 사육사에서 사육한 유충의 체중과 길이는 각각 평균 1.97g/마리와 3.75cm로, 일반농가의 1.58g/마리와 3.55cm에 비해 비교적 높은 것으로 나타났다. 하지만, 두께의 경우 2주 차까지 일반농가에서 대체로 높은 것으로 나타났으며, 이후 3~4주 차에서는 큰 차이를 보이지 않았다. 따라서 본 연구를 통해 개발한 흰점박이꽃무지 유충 스마트 사육사는 일반농가와 비교해 사육이 비교적 빠르고 생산량을 더 많이 확보할 수 있는 시스템으로 농가소득 증대에 유용할 것으로 판단되며, 장소 및 시간에 상관없이 생육환경 제어가 가능하여 개발된 시제품의 보급 확대가 필요하다.

  • PDF

Environmental Control in the Plant Factory System Influences Year-Round Production of Allium hookeri Leaves (삼채(Allium hookeri) 잎 연중생산을 위한 식물공장 환경제어 효과)

  • Jeong-Wook Heo;Jeong-Hyun Baek;Sung-Hyen Lee;Min-Jeong Kim;Chang-Kee Shim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.279-285
    • /
    • 2023
  • The demand for the fresh leaf of hooker chive, which is mainly used as functional roots and contains dietary sulfur or saponin, is increasing, but the leaves are only harvested 3-4 times per year under conventional field conditions. A plant factory system with different light qualities or intensities was applied for year-round production of the fresh leaves. Hooker chive (Allium hookeri) roots were hydroponically cultured under the plant factory with a mixture of blue plus red LEDs (Light-Emitting Diodes) and fluorescent lights for 50 weeks. Maximum leaf growth was attained with the 1.5 dS/m EC in the culture medium under the plant factory. The average leaf and shoot numbers of hooker chive grown hydroponically under a mixture of 200 µmol/m2/s LEDs increased by 147% and 140%, respectively compared to those under 100 µmol/m2/s LEDs at the 10th harvest. The leaf length of hooker chive grown under the LEDs treatment with the lowest light intensity significantly increased by 27% compared with the natural light treatment at the 10th harvest. However, there was no significant difference in leaf pigmentation between natural and 200 µmol/m2/s LEDs treatments. Plant factory with the mixture LEDs of blue and red lights can be applied for year-round production of hooker chive fresh leaves to ensure a stable supply of leafy vegetable throughout the year.

Application and Prospect of Fuzzy System in Agriculture (퍼지 시스템의 농업 응용과 전망)

  • 조성인
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.89-95
    • /
    • 1995
  • 퍼지 이론(fuzzy theory)은 정보의 애매성을 다루는 학문으로 과학에 주관성이 도입된 형태의 새로운 학문 분야이다. 인간의 사고를 수치화하고 이를 언어적으로 처리할 수 있는 퍼지 이론은 인공지능(artificial intelligence)의 한 분야로서, 1965년 Lofti Zadeh 교수에 의하여 창안되었다. 초기 기초 연구 중심의 단계에서 현재에는 첨단 전자공학의 발달과 함께 퍼지 제어기의 농업 및 산업 응용이 활발해지고 있으며, 퍼지 칩이나 퍼지 컴퓨터의 개발까지 연구가 진행되고 있다.(중략)

  • PDF

Effects of the Open Level of the Side Window on the Control of the Temperature and Relative Humidity in the Fog Cooling Greenhouse (포그냉방 온실에서 측창개폐수준이 온습도 제어에 미치는 영향)

  • Kim, Young-Bok;Sung, Hyun-Soo;Yun, Nam-Kyu;Lee, Si-Young;Hwang, Seung-Jae;Kim, Hyeon-Tae;Lee, Jang-Pyung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.265-278
    • /
    • 2011
  • Effects of the open level of the side window were studied to control the temperature and relative humidity in the fog cooling greenhouse. The greenhouse was cooled by air atomizing spray nozzles of the air and water two-fluid process. The control process includes the measuring of environmental variables, setting and coding of the water balance equations and heat balance in greenhouse, calculating of the roof window open and spray water, and operating of the motor and pump. The target temperature and relative humidity were set at $28^{\circ}C$, 75%, respectively. The three modes of the side window open level were 0%, 50% and 100%. The average dry bulb temperatures of the inside air were 28.2, 27.2 and $26.3^{\circ}C$, respectively and their standard deviation was ranged from $0.4^{\circ}C$to $0.8^{\circ}C$. Also the relative humidity of the 0% mode was the best controlled one with the average of 76.3% and the standard deviation of 2.1%.

Design of Environment Control and Automated Management Systems for Animal Production : A Review (축산을 위한 환경제어 및 자동화 사양관리 시스템 설계에 관한 문헌연구)

  • Chang, Dong-Il;Kim, Soung-Rai;Chang, Hong-Hee
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.24-41
    • /
    • 1995
  • The objective of this study were to review and analyze the application technologies of electronics and microprocessor for environment control and automated management systems of livestock production of the advanced countries, and to select the appropriate and applicable technologies for our systems among the analyzed. In this study, the environment control systems were analyzed mainly on the poultry production systems; and the automated management systems on swine and dairy production systems. According to the results, the advanced technologies reviewed and analyzed could be applicable for designing our animal production systems, if those were modified and remodeled for our situation.

  • PDF

A Study on Simulator for Environment Control of Agricultural Production Facility - Construction of Basic System with Numerical Model - (농업생산시설의 환경조절용 시뮬레이터에 관한 연구 - 수치모델에 의한 기본시스템 구축 -)

  • 손정익;최규홍
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1996
  • The purpose of this study is to construct the main system of simulator for the environment control of agricultural production facilities. The model describing the system was based on the energy and mass balance in an unsteady - state situation. The model consist of the three major parts : the main model, the light model, and the environmental control model, and each part was separated to be developed individually. The main model which is the core of this system includes the thermal model, the soil model, the ventilation model, the cultivation model, and the carbon dioxide model. And also the environmental control model includes the thermal curtain model, the heater/cooler model and the underground heat exchanger model. The equations used in this model were written in analog programming methods using PCSMP The simulator was evaluated through comparison between simulated and measured temperatures controlled during daytime and night. The results showed good agreements between the predicted and measured temperatures.

  • PDF

Automated Greenhouse Temperature and Humidity Control System using RaspberryPi (라즈베리파이를 이용한 비닐하우스 온습도 자동조절 시스템)

  • Bo Cheon Ha;Eun Ser Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.128-129
    • /
    • 2023
  • 해당 논문은 라즈베리파이를 이용한 온실의 온습도 자동제어 시스템에 관한 연구를 다룬다. 이 시스템은 특정 작물에 대한 최적의 생육환경 제공을 위해 자동으로 온도 및 습도를 측정하고 조절한다. 관리자는 수동으로도 각 기능을 제어할 수 있다. 온습도를 제어하기 위한 방법으로 자연환기, 인공환기, 온실내부 물분사, 열선작동의 방법을 사용한다. 자동화된 온습도 제어 시스템으로 농산물의 생산량 및 품질을 늘림과 동시에 온실 관리에 투자되는 자원을 줄일 수 있어 농업인들의 농업경쟁력을 향상시킬 수 있다.

A Development of Urban Farm Management System based on USN (USN 기반의 도시 농업 관리 시스템 개발)

  • Ryu, Dae-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1917-1922
    • /
    • 2013
  • The objective of this study is developing urban farm management system based on USN for remote monitoring and control. This system makes it easy to manage urban farm and make the database of collected information for to build the best environment for growing crops. For this, we build a green house and installed several types of sensors and camera through which the remote sensing information collected. In addition, building a web page for user convenience and information in real time to enable control. We confirmed experimentally all functions related to stability for a long period of time through field tests such as collection and transfer of information, environmental control in green house. It will be convenient for farmers to grow crops by providing the time and space constraints and a lot of flexibility. In addition, factory, office, home like environment, including facilities for it will be possible to extend.

Varying Effects of Artificial Light on Plant Functional Metabolites (인공광 이용에 따른 작물의 기능성 물질의 차별적 증가)

  • Kim, Yang Min;Sung, Jwa Kyung;Lee, Ye Jin;Lee, Deog Bae;Yoo, Chul Hyun;Lee, Seul Bi
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • BACKGROUND: Many studies on artificial lighting have been recently performed to investigate its effect on agricultural products with good quality. This review was aimed at comparing the effects of artificial light on functional metabolites of the plants that were grown in greenhouses and growth chamber. METHODS AND RESULTS: It has been summarized that artificial lighting both in growth chambers and greenhouses caused different functional metabolites patterns depending on light quality. Even though the same light quality was applied, different patterns in metabolites were observed in different plant species. For the same species, supplementation of the same light quality in both growth chambers and greenhouses did cause different functional metabolites patterns. CONCLUSION: Artificial lighting caused different patterns in functional metabolites of plants grown in greenhouses and growth chambers, depending on the light quality and/or plant species. The manipulation of plant growth and functional metabolites would be possible by engineering the light qualities, but knowledge on proper lighting condition depending on plant species and growth places would be necessary.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.