• Title/Summary/Keyword: 제어권 전환요청

Search Result 6, Processing Time 0.021 seconds

A Study on the Efficient Information Delivery of Take-Over Request for Semi-Autonomous Vehicles (반자율주행 차량의 제어권 전환 상황에서 효율적 정보 제공 방식에 관한 연구)

  • Park, Cheonkyu;Kim, Dongwhan
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.70-82
    • /
    • 2022
  • At the current stage of a semi-autonomous vehicle, there are situations in which the vehicle has to request take-over control to the driver quickly. However, current self-driving cars use only simple messages and warning sounds to notify drivers when handing over control, so they do not adequately convey considerations of individual characteristics or explanations of various emergent situations. This study investigated how visual and auditory information and the efficacy of drivers in self-driving cars can improve efficient take-over requests between the car and the driver. We found that there were significant differences in driver's cognitive load, reliability, safety, usability, and usefulness according to the combination of three visual and auditory information provided in the experiment of the take-over request situation. The results of this study are expected to help design self-driving vehicles that can communicate more safely and efficiently with drivers in urgent control transition situations.

Interaction Design of Take-Over Request for Semi-Autonomous Driving Vehicle : Comparative Experiment between HDD and HUD (반자율주행 차량의 제어권 전환 요청(TOR) 인터랙션 디자인 연구 : HDD와 HUD 비교 실험을 중심으로)

  • Kim, Taek-Soo;Choi, Song-A;Choi, Junho
    • Design Convergence Study
    • /
    • v.17 no.4
    • /
    • pp.17-29
    • /
    • 2018
  • In the semi-autonomous vehicle, before reaching a fully autonomous driving stage, it is imperative for the system to issue a take-over request(TOR) that asks a driver to operate manually in a specific situation. The purpose of this study is to compare whether head-up display(HUD) is a better human-vehicle interaction than head-down display(HUD) in the event of TOR. Upon recognition of TOR in the experiment with a driving simulator, participants were prompted to switch over to manual driving after performing a secondart task, that is, playing a game, while in auto-driving mode. The results show that HUD is superior to HDD in 'ease of use' and 'satisfaction' although there is no significant difference in reaction time and subjective workload. Therefore, designing secondary tasks through HUD during autonomous driving situation improves the user experience of the TOR function. The implication of this study lies in the establishing an empirical case for setting up UX design guidelines for autonomous driving context.

Effects of Situation Awareness and Decision Making on Safety, Workload and Trust in Autonomous Vehicle Take-over Situations (자율주행 자동차의 제어권 전환상황에서 상황인식 및 의사결정 정보 제공이 운전자에게 미치는 영향)

  • Kim, Jihyun;Lee, Kahyun;Byun, Youngsi
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.21-29
    • /
    • 2019
  • Take-over requests in semi-autonomous cars must be handled properly in the case of road obstacles or curved roads in order to avoid accidents. In these situations, situation awareness and appropriate decision making are essential for distracted drivers. This study used a driving simulator to investigate the components of auditory-visual information systems that affect safety, workload, and trust. Auditory information consisted of either voice guidance providing situation awareness for the take-over or a beep sound that only alerted the driver. Visual information consisted of either a screen showing how to maneuver the vehicle or only an icon indicating a take-over situation. By providing auditory information that increased situation awareness and visual information that aided decision making, trust and safety increased, while workload decreased. These results suggest that the levels of situation awareness and decision making ability affect trust, safety, and workload for drivers.

Analyzing the Impact of Changes in the Driving Environmenton the Stabilization Time of Take-over in Conditional Automation (조건부 자율주행시 주행환경 변화에 따른 제어권 전환 안정화 시간 영향 분석)

  • Sungho Park;Kyeongjin Lee;Jungeun Yoon;Yejin Kim;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.246-263
    • /
    • 2023
  • The stabilization time of take-over refers to the time it takes for driving to stabilize after the take-over. Following a take-over request from an automated driving system, the driver must become aware of the road driving environment and perform manual driving, making it crucial to clearly understand the relationship between the driving environment and stabilization time of take-over. However, previous studies specifically focusing on stabilization time after take-over are rare, and research considering the driving environment is also lacking. To address this, our study conducted experiments using a driving simulator to observe take-over transitions. The results were analyzed using a liner mixed model to quantitatively identify the driving environment factors affecting the stabilization time of take-over. Additionally, coefficients for stabilization time based on each influencing factor were derived.

The Preliminary Study on Driver's Brain Activation during Take Over Request of Conditional Autonomous Vehicle (조건부 자율주행에서 제어권 전환 시 운전자의 뇌 활성도에 관한 예비연구)

  • Hong, Daye;Kim, Somin;Kim, Kwanguk
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.101-111
    • /
    • 2022
  • Conditional autonomous vehicles should hand over control to the driver according on driving situations. However, if the driver is immersed in a non-driving task, the driver may not be able to make suitable decisions. Previous studies have confirmed that the cues enhance take-over performance with a directional information on driving. However, studies on the effect of take-over cues on the driver's brain activities are rigorously investigated yet. Therefore, this study we evaluates the driver's brain activity according to the take-over cue. A total of 25 participants evaluated the take-over performance using a driving simulator. Brain activity was evaluated by functional near-infrared spectroscopy, which measures brain activity through changes in oxidized hemoglobin concentration in the blood. It evaluates the activation of the prefrontal cortex (PFC) in the brain region. As a result, it was confirmed that the driver's PFC was activated in the presence of the cue so that the driver could stably control the vehicle. Since this study results confirmed that the effect of the cue on the driver's brain activity, and it is expected to contribute to the study of take-over performance on biomakers in conditional autonomous driving in future.

Development of LiDAR-Based MRM Algorithm for LKS System (LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발)

  • Son, Weon Il;Oh, Tae Young;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.174-192
    • /
    • 2021
  • The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.