• Title/Summary/Keyword: 제로샷 학습

Search Result 10, Processing Time 0.025 seconds

Gender Bias Mitigation in Gender Prediction Using Zero-shot Classification (제로샷 분류를 활용한 성별 편향 완화 성별 예측 방법)

  • Yeonhee Kim;Byoungju Choi;Jongkil Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.509-512
    • /
    • 2024
  • 자연어 처리 기술은 인간 언어의 이해와 처리에서 큰 진전을 이루었으나, 학습 데이터에 내재한 성별 편향이 모델의 예측 정확도와 신뢰성을 저하하는 주요한 문제로 남아 있다. 특히 성별 예측에서 이러한 편향은 더욱 두드러진다. 제로샷 분류 기법은 기존에 학습되지 않은 새로운 클래스를 효과적으로 예측할 수 있는 기술로, 학습 데이터의 제한적인 의존성을 극복하고 다양한 언어 및 데이터 제한 상황에서도 효율적으로 작동한다. 본 논문은 성별 클래스 확장과 데이터 구조 개선을 통해 성별 편향을 최소화한 새로운 데이터셋을 구축하고, 이를 제로샷 분류 기법을 통해 학습시켜 성별 편향성이 완화된 새로운 성별 예측 모델을 제안한다. 이 연구는 다양한 언어로 구성된 자연어 데이터를 추가 학습하여 성별 예측에 최적화된 모델을 개발하고, 제한된 데이터 환경에서도 모델의 유연성과 범용성을 입증한다.

Zero-shot Text Classification based on Reinforced Learning (강화학습 기반의 제로샷 텍스트 분류)

  • Zhang Songming;Inwhee Joe
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.439-441
    • /
    • 2023
  • 전통적인 텍스트 분류 방법은 상당량의 라벨링된 데이터와 미리 정의된 클래스가 필요해서 그 적용성과 확장성이 제한된다. 그래서 이런 한계를 극복하기 위해 제로샷 러닝(Zero-shot Learning)이 등장했다. 텍스트 분류 분야에서 제로샷 텍스트 분류는 모델이 대상 클래스의 샘플을 미리 접하지 않고도 인스턴스를 분류할 수 있도록 하는 중요한 주제이다. 이 문제를 해결하기 위해 정책 네트워크를 활용한 심층 강화 학습(DRL) 기반 접근법을 제안한다. 이러한 방법을 통해 모델이 새로운 의미 공간에 효과적으로 적응하면서, 다른 모델들과 비교하여 제로샷 텍스트 분류의 정확도를 향상시킬 수 있었다. XLM-R 과 비교하면 최대 15.9%의 정확도 향상이 나타났다.

Study on Zero-shot based Quality Estimation (Zero-Shot 기반 기계번역 품질 예측 연구)

  • Eo, Sugyeong;Park, Chanjun;Seo, Jaehyung;Moon, Hyeonseok;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.35-43
    • /
    • 2021
  • Recently, there has been a growing interest in zero-shot cross-lingual transfer, which leverages cross-lingual language models (CLLMs) to perform downstream tasks that are not trained in a specific language. In this paper, we point out the limitations of the data-centric aspect of quality estimation (QE), and perform zero-shot cross-lingual transfer even in environments where it is difficult to construct QE data. Few studies have dealt with zero-shots in QE, and after fine-tuning the English-German QE dataset, we perform zero-shot transfer leveraging CLLMs. We conduct comparative analysis between various CLLMs. We also perform zero-shot transfer on language pairs with different sized resources and analyze results based on the linguistic characteristics of each language. Experimental results showed the highest performance in multilingual BART and multillingual BERT, and we induced QE to be performed even when QE learning for a specific language pair was not performed at all.

Zero-Shot Readability Assessment of Korean ESG Reports using BERT (BERT를 활용한 한국어 지속가능경영 보고서의 제로샷 가독성 평가)

  • Son, Guijin;Yoon, Naeun;Lee, Kaeun
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.456-459
    • /
    • 2022
  • 본 연구는 최근 자연어 인공지능 연구 동향에 발맞추어 사전 학습된 언어 인공지능을 활용한 의미론적 분석을 통해 국문 보고서의 가독성을 평가하는 방법론 두 가지를 제안한다. 연구진은 연구 과정에서 사전 학습된 언어 인공지능을 활용해 추가 학습 없이 문장을 임의의 벡터값으로 임베딩하고 이를 통해 1. 의미론적 복잡도 와 2. 내재적 감정 변동성 두 가지 지표를 추출한다. 나아가, 앞서 발견한 두 지표가 국문 보고서의 가독성과 정(+)의 상관관계에 있음을 확인하였다. 본 연구는 통사론적 분석과 레이블링 된 데이터에 크게 의존하던 기존의 가독성 평가 방법론으로 부터 탈피해, 별도의 학습 없이 기존 가독성 지표에 근사한다는 점에서 의미가 있다.

Trends in Data Management Technology Using Artificial Intelligence (인공지능 기술을 활용한 데이터 관리 기술 동향)

  • C.S. Kim;C.S. Park;T.W. Lee;J.Y. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.22-30
    • /
    • 2023
  • Recently, artificial intelligence has been in the spotlight across various fields. Artificial intelligence uses massive amounts of data to train machine learning models and performs various tasks using the trained models. For model training, large, high-quality data sets are essential, and database systems have provided such data. Driven by advances in artificial intelligence, attempts are being made to improve various components of database systems using artificial intelligence. Replacing traditional complex algorithm-based database components with their artificial-intelligence-based counterparts can lead to substantial savings of resources and computation time, thereby improving the system performance and efficiency. We analyze trends in the application of artificial intelligence to database systems.

Cross-Lingual Style-Based Title Generation Using Multiple Adapters (다중 어댑터를 이용한 교차 언어 및 스타일 기반의 제목 생성)

  • Yo-Han Park;Yong-Seok Choi;Kong Joo Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.341-354
    • /
    • 2023
  • The title of a document is the brief summarization of the document. Readers can easily understand a document if we provide them with its title in their preferred styles and the languages. In this research, we propose a cross-lingual and style-based title generation model using multiple adapters. To train the model, we need a parallel corpus in several languages with different styles. It is quite difficult to construct this kind of parallel corpus; however, a monolingual title generation corpus of the same style can be built easily. Therefore, we apply a zero-shot strategy to generate a title in a different language and with a different style for an input document. A baseline model is Transformer consisting of an encoder and a decoder, pre-trained by several languages. The model is then equipped with multiple adapters for translation, languages, and styles. After the model learns a translation task from parallel corpus, it learns a title generation task from monolingual title generation corpus. When training the model with a task, we only activate an adapter that corresponds to the task. When generating a cross-lingual and style-based title, we only activate adapters that correspond to a target language and a target style. An experimental result shows that our proposed model is only as good as a pipeline model that first translates into a target language and then generates a title. There have been significant changes in natural language generation due to the emergence of large-scale language models. However, research to improve the performance of natural language generation using limited resources and limited data needs to continue. In this regard, this study seeks to explore the significance of such research.

Zero-Shot Fact Verification using Language Models Perplexities of Evidence and Claim (증거와 Claim의 LM Perplexity를 이용한 Zero-shot 사실 검증)

  • Park, Eunhwan;Na, Seung-Hoon;Shin, Dongwook;Jeon, Donghyeon;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.524-527
    • /
    • 2021
  • 최근 국외에서 사실 검증 연구가 활발하게 이루어지고 있지만 한국어의 경우 데이터 집합의 부재로 인하여 사실 검증 연구가 이루어지는데 큰 어려움을 겪고 있다. 이러한 어려움을 해소하고자 자동 생성 모델을 통하여 데이터 집합을 생성하는 시도도 있으나 생성 모델의 특성 상 부정확한 데이터가 생성되어 사실 검증 연구의 퀄리티를 떨어뜨린다는 문제점이 있다. 이러한 문제점을 해소하기 위해 수동으로 구축한 100건의 데이터 집합으로 최근에 이루어진 퓨-샷(Few-Shot) 사실 검증을 확장한 학습이 필요없는 제로-샷(Zero-Shot) 질의 응답에 대한 사실 검증 연구를 제안한다.

  • PDF

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

Zero-shot Dialogue System Grounded in Multiple Documents (Zero-shot 기반 다중 문서 그라운딩된 대화 시스템)

  • Jun-Bum Park;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.399-403
    • /
    • 2023
  • 본 논문에서는 다중 문서 기반의 대화 시스템을 통한 효율적인 정보 검색과 응답 생성에 중점을 둡니다. 대규모 데이터 집합에서 정확한 문서를 선택하는 데 필요한 검색의 중요성을 강조하며, 현재 검색 방법의 한계와 문제점을 지적합니다. 또한 더 자연스러운 답변을 생성하기 위해 대규모 언어 모델을 사용하게 되면서 fine-tuning 시에 발생하는 제약과 낭비를 모델의 제로샷 생성 능력을 활용하여 개선하려는 방안을 제안하며, 모델의 크기와 자원의 효율성에 대한 고려사항을 논의합니다. 우리의 접근 방식은 대규모 언어 모델을 프롬프트와 함께 다중 문서로 학습 없이 정보를 검색하고 응답을 생성하는 방향으로 접근하여 대화 시스템의 효율성과 유용성을 향상시킬 수 있음을 제시합니다.

  • PDF

Privacy-Preserving Language Model Fine-Tuning Using Offsite Tuning (프라이버시 보호를 위한 오프사이트 튜닝 기반 언어모델 미세 조정 방법론)

  • Jinmyung Jeong;Namgyu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.165-184
    • /
    • 2023
  • Recently, Deep learning analysis of unstructured text data using language models, such as Google's BERT and OpenAI's GPT has shown remarkable results in various applications. Most language models are used to learn generalized linguistic information from pre-training data and then update their weights for downstream tasks through a fine-tuning process. However, some concerns have been raised that privacy may be violated in the process of using these language models, i.e., data privacy may be violated when data owner provides large amounts of data to the model owner to perform fine-tuning of the language model. Conversely, when the model owner discloses the entire model to the data owner, the structure and weights of the model are disclosed, which may violate the privacy of the model. The concept of offsite tuning has been recently proposed to perform fine-tuning of language models while protecting privacy in such situations. But the study has a limitation that it does not provide a concrete way to apply the proposed methodology to text classification models. In this study, we propose a concrete method to apply offsite tuning with an additional classifier to protect the privacy of the model and data when performing multi-classification fine-tuning on Korean documents. To evaluate the performance of the proposed methodology, we conducted experiments on about 200,000 Korean documents from five major fields, ICT, electrical, electronic, mechanical, and medical, provided by AIHub, and found that the proposed plug-in model outperforms the zero-shot model and the offsite model in terms of classification accuracy.