• Title/Summary/Keyword: 제동온도

Search Result 61, Processing Time 0.034 seconds

A Study on the Temperature Change of Braking Disc and Thermal Conductivity during the Service (철도차량용 제동디스크의 운행중 온도 변화 및 열전도도 측정 연구)

  • Kim, Jae-Hoon;Goo, Byeong-Choon;Suk, Chang-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.665-669
    • /
    • 2007
  • This study investigates the temperature change and thermal conductivity for the braking disc of the railway vehicle due to the types of train and service conditions. The temperature change was measured by non-contact Infrared thermometers. Average temperature was measured between $79.32^{\circ}C$ and $104.46^{\circ}C$ due to types of train and service section. In the same service section, the surface temperatures of Saemaul train were higher than Mugungwha train; the reason might have been the average service speed of Saemaul train (83km/h) was higher than Mugungwha train (107km/h), and the weight was similar 39t (Mugungwha) and 39.3t (Saemaul). But the maximum surface temperature was measured on the Mugungwha train; however the difference was not too big with the maximum temperature of Saemaul train. Also, the disc surface temperatures were changed due to the material of lining; metal and non-asbestos, on the same train and the same service section. In addition. the thermal conductivity was tested the thermal conductivities were increased by the increasing of the temperature. The change is too big between $100^{\circ}C$ and $200^{\circ}C$. But each average value is small. and the mechanical property change is very low. As a result, we conclude that this disc is suitable for usage between $100^{\circ}C$ and $300^{\circ}C$.

A Study on the Establishment of Disc Braking Force Pattern to reduce the Wear Mass of Pad (패드 마모량 감소를 위한 디스크 제동력 패턴 설정에 관한 연구)

  • Kim, Seog-Won;Kim, Young-Guk;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.786-791
    • /
    • 2007
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. Also the braking system should be designed considering the economical management, such as effective use of generated braking energy and the minimum wear of friction materials(a pad and a brake shoe). In this paper, we establish the disc braking force pattern that reduces the wear of pad in the disc braking system by minimizing the variance of the instantaneous disk baking energy during braking time, and compare the wear mass of pad between the conventional disc braking force pattern and the established results.

  • PDF

A Study on the prediction of braking time for rotor brake system considering the friction coefficient variation with temperature (마찰계수의 변화를 고려한 로터 브레이크 시스템의 제동시간 예측)

  • Choi, Jang-Hun;Oh, Min-Hwan;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.653-660
    • /
    • 2009
  • A helicopter rotor brake system stops or reduces the speed of the rotor by transforming the kinetic energy into the heat energy. The frictionally generated heat has a considerable effect on the frictional property of material itself and causes the change of the friction coefficient which may affect the breaking time significantly. In this paper, to take into account the effect of change of friction coefficient according to temperature on braking time, thermo-mechanically coupled analysis is carried out by commercial software ABAQUS. Further, simple theoretical equation is derived considering thermo-mechanical behaviors. The predicted braking times both from theoretical and numerical methods are compared and validity of proposed theoretical equation is investigated.

Research on Overheating Prediction Methods for Truck Braking Systems (화물차의 제동장치에서 발생하는 과열 예측방안 연구)

  • Beom Seok Chae;Young Jin Kim;Hyung Jin Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.54-61
    • /
    • 2024
  • Recently, due to the increase in domestic and international online e-commerce platforms and the increase in container traffic at domestic ports, the operating ratio of large trucks has increased, and the number of truck fires is continuously increasing. In particular, spontaneous combustion is the most common cause of truck fires. Various academic approaches have been attempted to prevent truck fires, but due to the lack of research on the spontaneous tire ignition phenomenon that occurs during braking, this research directly designed and manufactured an experimental device to establish an environment similar to the braking system of a truck. A non-contact temperature sensor was installed on the brake device of the experimental device to collect temperature data generated from the brake device. Based on the data collected from the temperature sensor of the brake device and the temperature sensor on the tire surface, the ARIMA model among the time series prediction models was used to Appropriate parameters were selected to suit the temperature change trend, and as a result of comparing and analyzing the measured and predicted data, an accuracy of over 90% was obtained. Based on this, a plan was proposed to reduce the rate of fires in trucks by providing real-time warnings and support for truck drivers to respond to overheating phenomena occurring in the braking system.

The study on the Temperature Characteristics on Shield Moving ECB with PM for Application of Railway Vehicle (철도시스템 적용을 위한 영구자석형 Shield moving형 와전류 제동기의 온도 특성에 관한 연구)

  • Jung, Hwan-Su;Han, Kyung-Hee;Lee, Chang-Mu;Jang, Gil-Su
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1603-1604
    • /
    • 2015
  • ECB(Eddy Current Brake)는 철도시스템의 고속에서 제동력을 안정적으로 나타낼 수 있어서 TGV, ICE, JR-500등과 같은 철도에서 사용되고 있다. 하지만 저속에서는 효율적이지 못하고, 전자석은 경량성에 대한 문제와 에너지를 소비한다는 단점을 가지고 있다. 이 논문에서는 제안된 영구자석형 Shield moving형 와전류 제동기를 사용하였다. 이 와전류 제동기는 Shield의 각을 이동하여 제동력을 조절할 수 있으며 영구자석을 이용함으로서 전자석의 단점을 보안하였다. 하지만 영구자석은 온도에 대해 영향을 받을 수 있으므로 온도 특성은 전류밀도(J(A/m2))와 자속밀도(T)를 'Ansoft Maxell'을 시뮬레이션하여 확인하였다.

  • PDF

An Experimental Study on Braking Thermal Damage of Brake Disk Cover (브레이크 디스크 커버의 제동 열손상에 대한 실험적 연구)

  • Ko, Kwang-Ho;Moon, Byung-Koo
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.171-178
    • /
    • 2015
  • The disk cover is installed to protect brake disk and calliper and it's removed right before delivering to customers. The temperature of disk cover was measured driving test vehicles(2000cc, diesel) in this study. The highest temperature measured for the driving test(120km/h-braking(0.3G)-stop-120km/h-braking(0.5G)-stop) was $260{\sim}270^{\circ}C$ in the upper part of the disk cover and the temperature varied considerably around the disk cover. It can be inferred from this temperature distribution around the cover that the major heat transfer from hot disk to cover was through convection. In other words, the hot air generated by braking friction moved up to the upper part of the disk cover. And only the upper area of the disk cover was melted down during this driving test. The thickness of disk cover was increased to 1.0mm from 0.7mm and 1 paper of masking tape was pasted in the upper region of the disk cover. Then the cover endured the heated air formed by braking friction during the driving test.

A Study for brake distance according to a car and rail conditions (차량과 레일 조건에 따른 제동거리에 관한 고찰)

  • Jeon, Woon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1943-1952
    • /
    • 2011
  • Rail vehicle brakes partly or completely transform the kinetic energy of moving vehicles into other forms of energy, in order to reduce the speed, and if necessary to bring them to a halt. To fulfil these requirements, the effect of a certain brake force is necessary and especially it is considered that the brake force is a important device to rail vehicles as a mass transit. The brake distance is a criterion for measuring brake force. The brake force is measured via dozens of brake distance test before its service operation. The brake distance is influenced by cars and rail conditions; weight of cars, speed on the verge of braking, temperature of brake disk and condition of the upper side of rail, etc. Therefore we will study how the these factors impact with the brake distance via a real test results.

  • PDF

Experimental study on the braking performance of a brake shoe for power car (동력차용 브레이크슈의 제동성능에 관한 실험적 연구)

  • Kwon, Seok-Jin;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.87-92
    • /
    • 2000
  • In this paper, we investigated the braking performance of a composite brake shoe for power car. Laboratory bench test and field tests were carried out to characterize the braking performance by the parameters such as friction coefficient, wear rate, braking temperature and stopping distance. Density distribution was found to have a significant influence on the wear rate. The composite brake shoe with even density distribution showed better braking performance. The braking performance of a composite brake shoe was also compared with that of a cast iron brake shoe which is currently being used. The result indicated the performance of the composite brake shoe is better than the cast iron brake shoe.

  • PDF

The Improvement of Ferro-resonance circuit in the W.S Industries Capacitor Voltage Transformer (WSI제 콘텐서형 전위변성기 철공진회로 개선)

  • Kim, S.G.;Shin, J.C.;Cho, H.S.;Kim, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.485-487
    • /
    • 2003
  • 본 논문은 기설 WSI제 CVT에 대해 전자 과도해석 프로그램((EMTP : Electromagnetic Transient Program)을 통한 모의실험으로 철공진현상 제동저항 크기($0.5{\Omega}$)를 선정하고, 기설 154kV 및 345kV CVT의 철공진방지회로를 제동저항 단독취부 형태에서 과포화리액터와 제동저항을 직렬회로로 구성하여 취부하는 방식으로 개선한 후 실증시험 및 현장적용 시험을 통해 CVT 쳔공진현상 제동여부 확인 및 외함온도 변화추이 비교하여 개선효과를 제시함으로써 WSI제 CVT 고장예방에 기어코자 한다.

  • PDF

Effect of Pad Structure and Friction Material Composition on Brake Squeal Noise (제동패드의 구조와 마찰재 조성이 제동 스킬소음에 미치는 영향)

  • Goo, Byeong Choon;Kim, Jae Chul;Lee, Beom Joo;Park, Hyoung Chul;Na, Sun Joo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Brake squeal noise has been a challenging problems for a long time. It is very annoying to passengers and residents near tracks. Two methods have been applied to reduce or eliminate brake squeal noise. One is to improve frictional materials; the other is to optimize the topology and structures of brake pads. In this study, we developed two kinds of brake pads; one is a pad whose frictional material is different from the KTX brake pad friction material; the other is a flexible pad that has the same frictional material as that of the KTX brake pad, but a different structure. Squeal noise and friction coefficients were measured and analyzed using a full-scale brake dynamometer. It was found that the dynamometer test can simulate the squeal noise of KTX trains at stations. The squeal frequency of the KTX at 4500Hz was exactly reproduced; this value of 4500Hz was one of the natural frequencies of the KTX brake disc. It was also found that the squeal noise depended on the caliper pressure, initial disc temperature and braking speed. The average friction coefficient was 0.35~0.45. The new pad lowered the squeal noise by 17.3~21.6dB(A).