• Title/Summary/Keyword: 제동시스템

Search Result 307, Processing Time 0.182 seconds

A Simulation Program for the Braking Characteristics of Tractor-Semitrailer Vehicle (Tractor-Semitrailer 차량의 제동특성 프로그램 개발)

  • 서명원;박윤기;권성진;양승환;박병철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.152-167
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and when the road is wet or slippery. Under these conditions, the truck can spin out or the tractor can jackknife or the trailer can swing out. To design the air brake system for the commercial vehicle, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about the tractor-semitrailer and the air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the program. Designers can use this simulation program for understanding the braking characteristics such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

Train vehicle Simulation for a HILS System of Air Brake (공기 제동의 HILS 시스템 구성을 위한 철도차량 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.868-873
    • /
    • 2008
  • Train brake system is generally composed of an electronic brake and an air brake device, which has a crucial role for safety of the train. In this paper, a dynamic model for a tilting train, Hanvit-200 (TTX) has been derived for the purpose of developing a HILS system for the air brake device and anti-skid logic. Moreover, simulation studies has been conducted using Simulink software for skid situations. Simulation results demonstrate the validity of the proposed dynamic model.

  • PDF

$CO_2$ 냉매용 가스쿨러의 열전달 특성

  • 장영근;강병하
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.7
    • /
    • pp.24-28
    • /
    • 2002
  • 1987년의 몬트리얼 의정서에 의한 CFCs와 HCFCs의 규제에 이어 1999년의 교토의정서에 의한 지구온난화 물질에 대한 규제는 CFCs와 HCFCs의 대체물질로 준비되어온 HFCs의 사용에 제동을 걸게 되었다. 아울러 환경론자들은 냉동공조 업계가 HFCs를 사용하지 말고 탄화수소, 이산 화탄소, 암모니아, 물 및 공기와 같은 보다 환경친 화적인 자연냉매를 사용할 것을 요구하고 있으며, 최근 학계의 자연냉매에 대한 고무적인 연구결과는 자연냉매의 사용에 대한 산업계의 관심을 고조 시키고 있다. 본 고에서는 최근 주목을 받고있는 이 산화탄소를 냉매로 하는 냉방시스템 중의 한 요소인 가스쿨러에 대한 연구개발 현황분석 및 향후 과제에 대하여 살펴보기로 한다.

  • PDF

Design and Analysis of Eddy-Current Braker for High-Speed Train (고속전철 와전류 제동장치 설계와 특성해석 및 실험)

  • 정수진;강도현;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.659-663
    • /
    • 2002
  • The brake systems of high-speed train are to be equipped with three different brake systems, such as regenerative brake with regenerative feedback in driving car, a pneumatic disc brake, and non-contact linear eddy-current brake(ECB). The regenerative brake and the pneumatic disc brake are acting on the wheels. Their achievable braking force depends on the adhesive coefficient, which is influenced by the weather condition and speed, between the wheel and The linear eddy current brake gets an economical solution in the high-speed train because of the independence of the adhesive coefficient, no maintenance needed. and the good control characteristics. The braking force and the normal force of ECB for korean high-speed train are analysed by the 2D FEM(Finite Element Method). Finally the normal force is compared with the experiential values to verify the analysis.

Performance Analysis Charging/Discharging Strategy for HEV Adopting ESR-Ratio of Batteries and Ultra-Capacitors (배터리와 초고용량 커패시터의 내부 저항 비를 고려한 HEV의 충.방전 전략개발)

  • Kim, Won-Kyum;Jang, Jae-Hoon;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.366-368
    • /
    • 2007
  • 하이브리드 차량은 기존의 화석연료를 사용하는 엔진과 배터리, 초고용량 커패시터로부터 전원을 공급받는 전동기를 직 병렬 구조로 연결하여 연비를 개선하기 위해 개발되었다. 이를 위하여 가속 시 배터리와 초고용량 커패시터의 방전으로부터 전원을 공급받고, 감속 시 회생제동을 통해 다시 충전을 반복한다. 최근 배터리와 초고용량 커패시터의 용량 및 출력의 장단점을 상호 보완하고자 이중 보조 동력원에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 배터리와 초고용량 커패시터의 내부 저항을 고려하여 병렬 사용하는 이중 보조 동력원 시스템에 대하여 각각의 충전용량(SOC)에 따른 운전전략을 개발하고자 한다.

  • PDF

Development of parallel operating system of supercapacitor to improve battery life (배터리 수명 개선을 위한 슈퍼커패시터의 병렬 운전 시스템 개발)

  • Shin, Chul-Jun;Kwak, Tea-Kyun;Shin, Jun-young;Kim, Young-ryul;Lee, Jun-young
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.39-40
    • /
    • 2014
  • 최근 차량은 기존의 화석연료를 사용하는 엔진과 배터리로부터 전원을 공급받는 전동기를 연결하는 구조로 연비를 개선하기 위한 연구가 활발히 진행되고 있다. 가속 시 배터리 방전으로부터 전원을 공급받고, 감속 시 회생제동을 통해 배터리 충전을 반복한다. 이로 인한 배터리의 수명한계 및 전력 한계 등을 보완하기 위해서 초고용량 커패시터를 배터리와 함께 사용하는 이중 보조 동력원에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 배터리 수명 개선을 위해 배터리와 슈퍼커 패시터를 병렬 운전하는 5kW급 양방향 DC/DC 컨버터를 설계하여 검증하였다.

  • PDF

Intersection Collision Situation Simulation of Automated Vehicle Considering Sensor Range (센서 범위를 고려한 자율주행자동차 교차로 충돌 상황 시뮬레이션)

  • Lee, Jangu;Lee, Myungsu;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.114-122
    • /
    • 2021
  • In this paper, an automated vehicle intersection collision accident was analyzed through simulation. Recently, the more automated vehicles are distributed, the more accidents related to automated vehicles occur. Accidents may show different trends depending on the sensor characteristics of the automated vehicle and the performance of the accident prevention system. Based on NASS-CDS (National Automotive Sampling System-Crashworthiness Data System) and TAAS (Traffic Accident Analysis System), four scenarios are derived and simulations are performed. Automated vehicles are applied with a virtual system consisting of an autonomous emergency braking system and algorithms that predict the route and avoid collisions. The simulations are conducted by changing the sensor angle, vehicle speed, the range of the sensor and vehicle speed range. A range of variables considered vehicle collision were derived from the simulation.

Intersections Accident Simulation of Automated Vehicles based on Actual Accident Database (국내 실사고 기반 자율주행차 교차로 사고 시뮬레이션)

  • Shin, Yunsik;Park, Yohan;Shin, Jae-Kon;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.106-113
    • /
    • 2021
  • In this study, The behavior of an autonomous vehicle in an intersection accident situation is predicted. Based on a representative intersection accident situation from actual intersection accident database, simulation was performed by applying the automatic emergency braking algorithm used in the autonomous driving system. Accident reconstruction was performed based on the accident report of the representative accident situation. After applying the autonomous driving system to the accident-related vehicle, the tendency of intersection accidents that may occur in autonomous vehicles was identified and analyzed.

Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle (전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

A Study on the Accident Reconstruction Simulation about AEBS of ADAS Vehicle using Prescan (Prescan을 활용한 ADAS 차량의 AEBS에 대한 사고 재현 시뮬레이션 연구)

  • Jonghyuk Kim;Jaehyeong Lee;Songhui Kim;Jihun Choi;Woojeong Jeon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2023
  • In recent years, the technology for autonomous driving has been advancing rapidly, ADAS (Advanced Driver Assistance System) functions, which improve driver convenience and safety performance, are mostly equipped in recently released vehicles and range from level 0 to level 2 in autonomous driving technology. Among the various functions of ADAS, AEBS (Autonomous Emergency Braking System), which analyzes traffic accidents, is the most closely related to the vehicle's braking. This study developed a simulation technique for reproducing accidents related to AEBS based on real vehicle experimental data, and it was applied to the analysis of actual ADAS vehicle accidents to identify the causes of accidents.