• Title/Summary/Keyword: 제네틱알고리즘

Search Result 4, Processing Time 0.017 seconds

A Study On Development of Embedded Overload Regulation System (임베디드 과적 차량 단속시스템 구축방안에 대한 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Lee, Dong-Yun;Kim, Yun-Gi;Kim, Do;Choi, Ji-Sun;Kang, Seok-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.429-432
    • /
    • 2011
  • 과적차량은 도로 및 교량 구조물과 도로 횡단 시설물 등에 손상요인으로 작용하며 기존의 단속 시스템은 축조작 및 인력부족등 많은 문제점을 내포하고 있어서 이에 대한 대처방안이 요구되고 있다. 이에 본 논문에서는 주행중인 과적차량의 지능형 임베디드 단속 시스템 개발을 위하여 유전자 알고리즘 기법을 적용, 도로자체를 저울로 하여 주행중인 차량의 하중 및 주행정보를 분석을 연구하였으며 이를 통하여 효율적인 과적 단속이 이루어 질 수 있다고 판단된다. 또한 USN구성을 위한 임베디드 센서와 함께 Internal/External Network의 무선화 시스템을 통한 사용자 중심의 시스템을 구축하는 것이 최종 목적이므로 향후 WCDMA/HSDPA를 이용한 External Network의 구성과 실제 과적 단속 적용을 위하여 Test Bed를 통한 실험이 실시되어야 할 것이다.

  • PDF

Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm (제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

A Comparative Study on the Genetic Algorithm and Regression Analysis in Urban Population Surface Modeling (도시인구분포모형 개발을 위한 GA모형과 회귀모형의 적합성 비교연구)

  • Choei, Nae-Young
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.107-117
    • /
    • 2010
  • Taking the East-Hwasung area as the case, this study first builds gridded population data based on the municipal population survey raw data, and then measures, by way of GIS tools, the major urban spatial variables that are thought to influence the composition of the regional population. For the purpose of comparison, the urban models based on the Genetic Algorithm technique and the regression technique are constructed using the same input variables. The findings indicate that the GA output performed better in differentiating the effective variables among the pilot model variables, and predicted as much consistent and meaningful coefficient estimates for the explanatory variables as the regression models. The study results indicate that GA technique could be a very useful and supplementary research tool in understanding the urban phenomena.

Development of Genetic Algorithm for Robust Control of Mobile Robot (모바일 로봇의 견실제어를 위한 제네틱 알고리즘 개발)

  • 김홍래;배길호;정경규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.241-246
    • /
    • 2004
  • This paper proposed trajectory tracking control of mobile robot. Trajectory tracking control scheme are real coding genetic-algorithm and back-propergation algorithm. Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studios have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using Real coding Genetic Algorithm(RCGA) and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verify numerical simulations and the results show better performance than constant gain controller.

  • PDF