• Title/Summary/Keyword: 정화효율

Search Result 675, Processing Time 0.037 seconds

Effect of Soil Micro-environments on the Remediation Efficiency of Contaminated Soil and Groundwater: Review and Case Study (토양지하수 미세환경과 오염정화효율과의 상관성 고찰)

  • Shim, Moo Joon;Yang, Jung-Seok;Lee, Mi Jung;Lee, Giehyeon;Park, Jae Seon;Kim, Guk Jin;Min, Sang Yoon;Kim, Joo Young;Choi, Min Joo;Kim, Min Chan;Lim, Jong Hwan;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.34-45
    • /
    • 2014
  • A variety of physical, chemical, and microbiological techniques have been developed to deal with soil and groundwater contamination. However, in the presence of the large portion of soil micro-environments, contaminant rebound and/or tailing have been frequently reported. Case study of total petroleum hydrocarbons (TPH) removal by full-scale land farming showed that contaminant rebound and/or tailing occurred in 9 out of total 21 cases and subsequently resulted in problems of a long term operation to satisfy TPH guidelines of contaminated soil and groundwater. The main cause of contaminant rebound and tailing is considered to be the strong interactions between contaminants and micro-environments including micro-particles, micro-pores, and organic matter. Thus, this study reviewed the effects of soil micro-environments of soil and groundwater on the removal efficiency for both heavy metals and petroleum contaminants. In addition, the various methods of sampling, analysis, and assessment of soil micro-environments were evaluated. Thorough understanding of the effects of soil micro-environments on contaminant removal will be essential to achieve a cost-effective and efficient solution to contaminated sites.

Evaluation of Treatment Efficiencies of Water Quality for 5 years in Constructed Wetland to Upper Region of Water Source (상수원 상류지역 인공습지의 5년간 수질 정화효율 평가)

  • Park, Jong Seok;Kim, Kang Seok;Kim, Yong Chan;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.479-488
    • /
    • 2012
  • This study evaluates treatment efficiencies of pollutants in Boknae bio-park constructed wetlands surrounding Juam Lake for 5 years from January 2006 to December 2010, in order to treat non-point pollutants effectively. The analysis of monthly treatment efficiency of pollutants shows that the scope of BOD is -19.11~37.72%, and of COD is 30.14~27.38%, thus the monthly deviation COD is relatively higher than BOD, and the scope of SS is -54.07~64.82%. Moreover, the analysis of seasonal treatment efficiency of pollutants shows that the treatment efficiency of TN is higher than 36.8% on average for 5 years in the spring and winter, and of TP relatively lower than other pollutants, however, the seasons don't make much difference to the treatment efficiency of TP.

화재대피용 방독마스크 정화통용 코발트 촉매의 저온산화반응 효율

  • 박재만;김덕기;신채호;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.57-60
    • /
    • 2002
  • 국내에서 사용되고 있는 대부분의 화재대피용 방독마스크 정화통은 외국에서 고가에 수입되고 있거나, 국내 제조시는 많은 기술을 외국에 의존하고 있다. 이들 정화통의 충진재는 일산화탄소(CO)를 제거하기 위해 망간(Mn), 구리(Cu)등을 활성탄에 담지시켜 제조한 촉매층과 $SO_2$, HCI 등의 유독가스를 제거하기 위한 제올라이트 등의 흡착층으로 구성되어있다. 그러나 이들 충진재중 CO 제거용 촉매는 상온에서 CO의 제거효율이 낮아 많은 양을 충진해야 하는 어려움이 있다.(중략)

  • PDF

The Application of the Sewage, Sanitary Sewage and Wastewater Processing by Soil Purification Theory (토양정화법을 이용한 하.오수 및 폐수 처리의 현장적용성에 관한 연구)

  • Chun, Byungsik;Yoo, Junhee;Kim, Jungyong;Kumar, S;Shin, Sanguok;Shin, Bangwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 2008
  • Soil purification theory is the method using the soil micro-organism like aerobic and anaerobic for treatment of wastewater. The soil has many kinds of micro-organism and it multiply as change of the environment. Unlikely other methods, the soil purification theory is adaptable to inflow water change; moreover, it can process the T-N, T-P without any special method and management. The top is covered with the improved soil which can remove the bad smell and is used for resting place according to planting the lawn. This study is focused on analysis of the treatment processing of wastewater comparing inflow with outflow water. As a results, removal rate of the processing the BOD, COD and SS is almost 90~100% and it is 60~80% in T-N, T-P.

  • PDF

산성독가스용 방독마스크의 아황산가스 및 황화수소 제거 성능

  • 박재만;김덕기;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.474-477
    • /
    • 2003
  • 산성가스용 방독마스크 정화통은 활성탄에 정화제를 첨착시킨 첨착 활성탄을 사용하여 유해가스를 제거하여 왔으며, 일반적으로 알칼리제인 Ca(OH)$_2$를 첨착시켜 유독가스와 중화반응을 유도하여 왔다. 그러나 이들의 흡착제거 능력이 크지 않아 많은 양을 사용하여야 하는 문제점이 있었다. 따라서 정화통의 성능을 좌우하는 새로운 첨착물질을 선정하여야 고효율ㆍ저비용 정화통을 개발할 수 있으며, 본 연구에서는 이러한 첨착흡착제를 개발하여 이를 방독마스크 정화통에 적용하고자 하였다.(중략)

  • PDF

The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method (펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성)

  • Seo, Seok-Ju;Na, So-Jeong;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.885-893
    • /
    • 2014
  • This research reports the enhanced Electrokinetic (EK) with $H_2O_2$ and sodium dodecyl surfate (SDS), which are commonly used in Fenton oxidation and soil flushing method, in order to remediate soil contaminated with heavy metals and Total Petroleum Hydrocarbons (TPH) simultaneously. In addition, influences of property of soil and concentration of chemical solution were investigated through experiments of different types of soils and varying concentration of chemical reagents. The results indicated, in the experiments using artificially contaminated soil, the highest removal efficiency of heavy metals using 10% $H_2O_2$ and 20mM SDS as electrolytes. However, in the experiments using Yong-San soils (study area), remediation efficiency of heavy metals was decreased because high acid buffering capacity. Through experiment of 20% $H_2O_2$ and 40mM SDS, increased electric current influences the remediation of heavy metals due to decrease in the soil pH. In the experiments of Yong-San soils, the remediation efficiency of TPH was decreased compared with artificially spiked soils because high acid buffering capacity and organic carbon contents. Furthermore, the scavenger effect of SDS influenced TPH oxidation efficiency under the conditions of injected 40mM SDS in the soils. Therefore, the property of soil and concentration of chemical reagents cause the electroosmotic flow, soil pH, remediation efficiency of heavy metals and TPH.

A Treatment of Acid Mine Drainage Using the Rice Stalk and Cow Manure (볏짚 및 우분을 이용한 산성광산배수 정화)

  • 정영욱;민정식;이현주;권광수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.116-121
    • /
    • 1997
  • Pilot wetland reactor systems to test acid mine drainage treatment efficiencies for metals were designed and operated at the Dalsung mine and surveyed the operating problems. pH and Eh (redox potential) were measured in situ and anayses of Cd, Pb, As, Zn, Cu, Fe, Al and Mn were carried out in the laboratory. Maximum metal removal efficiencies of the reactor containing the rice stalks, the cow manure and limestones were that Cu, Zn, Fe, Cd, Al, Mn and Pb were lowered by 98%, 100%, 99%, 100%, 97%, 61% and 100%, respectively and at that time the pH and Eh of the effluents from the reactor were 6 and about -300 mV. However, the redox potential was raised and removal of metal elements except aluminium was decreased with operation time. It suggests that the reduced condition is very important for the metal removal. During the operation, problems such as scaling in pipes and volume change of the substrate within the reactor occurred, which were preventing the flow of main drainage in pipes and reactor.

  • PDF

The Effect of Flushing Solutions on ElectroKinetic Remediation of Ferrous Soil Contaminated by Lead (납으로 오염된 철성분 함유토의 동전기 정화 특성에 세척제가 미치는 영향)

  • 김수삼;김병일;한상재;김정환
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.54-62
    • /
    • 2004
  • In order to enhance the efficiency of removal a series of ElectroKinetic Remediation (EKR) tests on ferrous soil contaminated by lead are carried out using acids, chelates and surfactant as flushing agents. The test results indicate that pH in the electrolyte rapidly reached at steady state as the introduce of flushing solution of the lower pH, the type of flushing solution have no effect the distribution of electrical voltage within the sample but the increasing of solution concentration increases it at x/L=0.9. In the distribution of the residual lead in the sample SDS is the highest. Also, the removal efficiency for acetic acid concentration of 1mM Is the highest but the concentration of acetic acid significantly have no effect.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

An Experimental Study on Filtration Efficiency of Sand Filter Layers to TSS and COD in Non-point Source Pollutant (분산형 빗물 저류조용 모래 여과층을 적용한 도심지 비점오염원의 TSS와 COD 정화효율에 대한 실험적 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1477-1488
    • /
    • 2014
  • Prevalent construction of impermeable pavements in urban areas causes diverse water-related environmental issues, such as lowering ground water levels and shortage of water supply for the living. In order to resolve such problems, a rainwater reservoir can be an effective and useful solution. The rainwater reservoir facilitates the hydrologic cycle in urban areas by temporarily retaining precipitation-runoff within a shallow subsurface layer for later use in a dry season. However, in order to use the stored water of precipitation-runoff, non-point source pollutants mostly retained in initial rainfall should be removed before being stored in the reservoir. Therefore, the purification system to filter out the non-point source pollutants is essential for the rainwater reservoir. The conventional soil filtration technology is well known to be able to capture non-point source pollutants in a economical and efficient way. This study adopted a sand filter layer (SFL) as a non-point source pollutant removal system in the rainwater reservoir, and conducted a series of lab-scale chamber tests and field tests to evaluate the pollutant removal efficiency and applicability of SFL. During the laboratory chamber experiments, three types of SFL with the different grain size characteristics were compared in the chamber with a dimension of $20cm{\times}30cm{\times}60cm$. To evaluate performance of the reservoir systems, the concentration of the polluted water in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) were measured and compared. In addition, a reduction in hydraulic conductivity of SFL due to pollutant clogging was indirectly estimated. The optimum SFL selected through the laboratory chamber experiments was verified on the in-situ rainwater reservoir for field applicability.