• Title/Summary/Keyword: 정찰

Search Result 349, Processing Time 0.022 seconds

Development and Application of Remote Airborne Control Simulator for Experimentation of Manned-Unmanned Teaming of Fixed Wing UAV (고정익 유/무인기의 협업 모의를 위한 원격공중통제 시뮬레이터 개발 및 활용방안)

  • Choi, Young Mee
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • The purpose of this study was to address a Remote Airborne Control Simulator that could simulate manned-unmanned teaming (MUM-T mission) for fixed wing UAV. With rapid technological development of unmanned aerial vehicle (UAV), the mission capability of UAV has tremendously grown. The role of UAV extends from simple reconnaissance to highly automated wingman. Accordingly, the requirement of UAV ground simulator should be modified as well to meet function requirements for simulating a MUM-T mission. A developed remote airborne control simulator was developed for conducting fixed wing UAV MUM-T operation simulations on the ground. The newest MUM-T examples, usage, and application of the developed remote airborne control simulator for MUM-T simulation are also presented in this study.

A study on security threats to drones using open source and military drone attack scenarios using telemetry hijacking (오픈소스 활용 드론에 대한 보안 위협과 Telemetry Hijacking을 이용한 군용 드론 공격 시나리오 연구)

  • Lee, Woojin;Seo, Kyungdeok;Chae, Byeongmin
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.103-112
    • /
    • 2020
  • Recently, the interest in hobby/leisure drones is increasing in the private sector, and the military also uses drones in various countries such as North Korea, the United States, and Iran for military purposes such as reconnaissance and destruction. A variety of drone related research is underway, such as establishing and operating drone units within the Korean military. Inparticular, recently, as the size of drone flight control source code increases and the number of functions increases, drone developers are getting accustomed to using open sources and using them without checking for separate security vulnerabilities. However, since these open sources are actually accessible to attackers, they are inevitably exposed to various vulnerabilities. In this paper, we propose an attack scenario for military drones using open sources in connection with these vulnerabilities using Telemetry Hijacking techniques.

A Study on the Image Based Auto-focus Method Considering Jittering of Airborne EO/IR (항공탑재 EO/IR의 영상떨림을 고려한 영상기반 자동 초점조절 기법 연구)

  • Kang, Myung-Ho;Kim, Sung-Jae;Koh, Yeong Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • In this paper, we propose methods to improve image-based auto-focus that can compensate for drawbacks of traditional auto-focus control. When adjusting the focus, there is a problem that the focus window cannot be set to the same position if the camera's LOS is not directed at the same location and flow or shake. To address this issue, we applied image tracking techniques to improve optimal focus localization accuracy. And also, although the same focus value should be calculated at the same focus step, but different values can be calculated by camera's fine shaking or image disturbance due to atmospheric scattering. To tackle this problem a SAFS (Stable Adjacency Frame Selection) has been proposed. As a result of this study, our proposed methodology shows more accurate than traditional methods in terms of finding best focus position.

Development of Air to Air Mission Tactics for Manned-Unmanned Aerial Vehicles Teaming (공대공 교전을 위한 유무인항공기 협업 전술 개발)

  • Hwang, Seong-In;Yang, Kwang-Jin;Oh, Jihyun;Seol, Hyeonju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • UAVs have been deployed various missions such as deception, reconnaissance and attack since they have been applied in battlefield and achieved missions successfully instead of man. In the past, it is impossible for UAVs to conduct autonomous missions or cooperative mission between manned aircraft due to the limitation of the technology. However, theses missions are possible owing to the advance in communication and AI Technology. In this research, we identified the possible cooperative missions between manned and unmanned team based on air-to-air mission. We studied cooperative manned and unmanned tactics about fighter sweep mission which is the core and basic operation among various air-to-air missions. We also developed cooperative tactics of manned and unmanned team by classifying nonstealth and stealth confrontational tactics. Hereafter, we verified the validity of the suggested tactics using computer simulations.

Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor (자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어)

  • Jang, Jae-Seok;Kim, Min-Soo;Kim, Seong-Jin;Lee, Cheol-Keun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1205-1212
    • /
    • 2021
  • Robots that can actually help people a lot by dealing with dangerous tasks that are difficult for people to do, such as disaster situations, lifesaving, handling dangerous goods, and reconnaissance of dangerous areas, continue to become an issue. Therefore, in this paper, we intend to implement a mobile robot arm that can implement a human motion will on the robot arm to enable active response according to the situation and control the vehicle according to hand movements to give mobility. A controller is manufactured using a flex sensor and agyro sensor, and the roll and pitch values of the two gyro sensors are adjusted to control the angle of the robot arm and specify the vehicle direction. In addition, by designating the levels of the three flex sensors, the motor is operated according to hand movements, and a robot arm is implemented so that objects can be picked up and moved.

A Study on the Possibility of Securing Command of the Air in Local War (지상군의 국지제공권 확보 가능성 연구)

  • Lee, Chang In;Jung, Min Sup;Cho, Sang Keun;Park, Sang-Hyuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.173-179
    • /
    • 2022
  • Through the 2014 Donbas conflict and the 2022 Ukraine-Russia war, we are experiencing that the command of the air is no longer only secured by the Air Force. Long-range surveillance reconnaissance and strikes carried out by the Air Force could be replaced by drones and missiles, and the enemy's aerial attacks could be controlled by air defense systems such as Panchir and portable anti-aircraft missiles, allowing ground forces to carry out maneuvers freely. In other words, it is much more advantageous for the air force and the navy to take control of the air through long-distance operations, and the ground forces should support them. Therefore, this study aims to consider the cost-effectiveness aspect of the delivery command of the air; it provides implications for quickly responding to enemy air attacks by developing the air defense weapon system, drones, missiles, precision-guided munitions, etc rather than focusing on expensive fighter jets.

Development of the Program for Reconnaissance and Exploratory Drones based on Open Source (오픈 소스 기반의 정찰 및 탐색용 드론 프로그램 개발)

  • Chae, Bum-sug;Kim, Jung-hwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • With the recent increase in the development of military drones, they are adopted and used as the combat system of battalion level or higher. However, it is difficult to use drones that can be used in battles below the platoon level due to the current conditions for the formation of units in the Korean military. In this paper, therefore, we developed a program drones equipped with a thermal imaging camera and LiDAR sensor for reconnaissance and exploration that can be applied in battles below the platoon level. Using these drones, we studied the possibility and feasibility of drones for small-scale combats that can find hidden enemies, search for an appropriate detour through image processing and conduct reconnaissance and search for battlefields, hiding and cover-up through image processing. In addition to the purpose of using the proposed drone to search for an enemies lying in ambush in the battlefield, it can be used as a function to check the optimal movement path when a combat unit is moving, or as a function to check the optimal place for cover-up or hiding. In particular, it is possible to check another route other than the route recommended by the program because the features of the terrain can be checked from various viewpoints through 3D modeling. We verified the possiblity of flying by designing and assembling in a form of adding LiDAR and thermal imaging camera module to a drone assembled based on racing drone parts, which are open source hardware, and developed autonomous flight and search functions which can be used even by non-professional drone operators based on open source software, and then installed them to verify their feasibility.

Modelling of Fixed Wing UAV and Flight Control Computer Based Autopilot System Development for Integrated Simulation HILS Environment (고정익 UAV 모델링 및 비행조종컴퓨터 기반 오토파일럿 통합 시뮬레이션 HILS 환경 구축)

  • Kim, Lamsu;Lee, Dongwoo;Lee, Hohyeong;Hong, Suwoon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.857-866
    • /
    • 2022
  • Fixed-wing UAVs have long endurance and range capabilities compared to other aerial platforms. These advantages led fixed-wing UAVs to become a popular platform for reconnaissance missions in the military. In this research, we modeled fixed-wing UAVs, including the landing gear model and developed a guidance and control system for flight control computers to construct a HILS environment. We also developed an autopilot system that includes automated take-off, cruise, and landing control for UAVs. We also retrived the Aerodynamic coefficients an UAV using Datcom and AVL software and used them for 6 degrees of freedom modeling. The Flight control computer calculates guidance commands using the Carrot chasing guidance law after distinguishing the condition of the UAV based on 16 pre-defined flight modes and calculates control inputs using Nonlinear Dynamic Inversion (NDI) control scheme. We used RTNngine to integrate the Simulink model and flight control computer for HILS environment formulation.

A Study On Performance Evaluation of Cryptographic Module and Security Functional Requirements of Secure UAV (보안 UAV를 위한 암호모듈의 성능평가와 보안성 평가 방법에 대한 연구)

  • Kim, Yongdae;Kim, Deokjin;Yi, Eunkyoung;Lee, Sangwook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.737-750
    • /
    • 2022
  • The demands of Unmanned Aerial Vehicles (UAVs) are growing very rapidly with the era of the 4th industrial revolution. As the technology of the UAV improved with the development of artificial intelligence and semiconductor technology, it began to be used in various civilian fields such as hobbies, bridge inspections, etc from being used for special purposes such as military use. MAVLink (Macro Air Vehicle Link), which started as an open source project, is the most widely used communication protocol between UAV and ground control station. However, MAVLink does not include any security features such as encryption/decryption mechanism, so it is vulnerable to various security threats. Therefore, in this study, the block cipher is implemented in UAV to ensure confidentiality, and the results of the encryption and decryption performance evaluation in the UAV according to various implementation methods are analyzed. In addition, we proposed the security requirements in accordance with Common Criteria, which is an international recognized ISO standard.

Operation Availability Analysis Model Development for High Altitude Long Endurance Solar Powered UAV (고고도 장기체공 태양광 무인기의 운용 가용성 분석 모델 연구)

  • Bong, Jae-Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2022
  • High Altitude Long Endurance(HALE) solar powered UAV is the vehicle that flies for a long time as solar power energy sources. It can be used to replace satellites or provide continuous service because it can perform long-term missions at high altitudes. Due to the property of the mission, it is very important for HALE solar powered UAV to have maximum flight time. It is required for mission performance to fly at high altitudes continuously except a return for temporary maintenance. Therefore mission availability time analysis is a critical factor in the commercialization of HALE solar powered UAV. In this paper, we presented an analytic model and logic for available time analysis based on the design parameters of HALE solar powered UAV. This model can be used to analyze the possibility of applying UAV according to the UAV's mission in concept design before the UAV detail design stage.