• Title/Summary/Keyword: 정지천이궤도

Search Result 10, Processing Time 0.036 seconds

Comparison of the Mission Performance of Korean GEO Launch Vehicles for Several Propulsion Options (시스템 구성에 따른 정지궤도 발사체의 임무성능 비교)

  • Hong, Mir;Yang, Seong-Min;Kim, Hye-Sung;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.60-71
    • /
    • 2017
  • A trajectory analysis program is developed using a 3DOF trajectory model for the performance analysis of geostationary launch vehicles by system options. Launch trajectory and the performance of injection at GTO was estimated using this program for several propellant options, engine types, number of engines and the location of launch site. Results of the analysis presents that the possibility of mission accomplishment by several design options using domestic launch sites and the development direction of GEO launch vehicles.

LIQUID APOGEE ENGINE BURN PLANS FOR THE KOREASAT-3 (액체추진제를 사용한 무궁화위성 3호의 정지궤도 진입 시뮬레이션)

  • 윤재철;최규홍;김두환;김방엽;김은규
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.427-436
    • /
    • 1998
  • The apogee manoeuvre of $KOREASAT-1{cdot}2{cdot}3$ is basic elliptical orbit transfer converting orbit plane. The KOREASAT-3 is planed for multi-burn manoeuvres using the liquid apogee engine while the $KOREASAT-1{cdot}2$ used the apogee kick motor that executes a single burn in the apogee of transfer orbit using the solid propellant. This study analyzed the multi-burn manoeuvres using the liquid apogee engine and the propellant control method and developed the simulation tools. For the purpose of precise simulation, We designed tools in the basic of orbit propagation software, COWELL5, that was developed by members of Center for Astrodynamics in Yonsei university and the results can be displayed in 3-D graphic of $STK/VO^{TM}$.

  • PDF

발사체별 정지궤도복합위성 추진제버짓 비교연구

  • Park, Eung-Sik;Park, Bong-Gyu;Park, Jong-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.178.2-178.2
    • /
    • 2012
  • 정지궤도위성은 발사체에서 위성이 분리된 이후 천이궤도로부터 원하는 목표궤도로 궤도전이를 해야 한다. 또한 임무기간동안 궤도상에서 다양한 교란을 겪게 되며 이로 인해 시간이 증가함에 따라 위성의 위치가 변화하게 된다. 정지궤도위성은 이러한 궤도전이 및 궤도상 위치변화를 제어하기 위한 추진시스템을 장착하고 임무기간에 걸쳐 요구되는 추진제를 탑재해야 한다. 위성의 설계 초기에는 추정되는 위성의 건조질량을 기반으로 하여 궤도전이와 궤도상 임무에 필요로 하는 추진제 버짓을 계산하고 이를 토대로 하여 위성 시스템 설계를 진행한다. 또한 발사체별로 발사체의 성능과 발사장에 따라 근지점고도와 발사 경사각이 모두 상이하므로 발사체가 정해지지 않은 상태에서 발사체별 추진제 버짓을 계산, 비교하고 추진 시스템의 탱크가 이를 모두 수용할 수 있는지 분석하는 것이 중요하다. 본 논문에서는 정지궤도복합위성의 추정 건조질량과 임무분석을 통해 주어진 ${\Delta}V$와 각 발사체별 궤도전이에 필요한 ${\Delta}V$를 바탕으로 하여 발사체별 추진제버짓을 계산하였고 이를 비교검토 하였다. 이후 이러한 기본 자료를 바탕으로 하여 정지궤도복합위성 추진시스템의 추진제 수용가능 여부, 건조질량 증가 여유 등 기본설계를 진행할 수 있다.

  • PDF

TC & R Communication Link Performance Analysis of Geostationary Satellite Employing PCM/PSK/PM on Super Synchronous Transfer Orbit (PCM/PSK/PM 방식을 사용하는 정지궤도 위성의 슈퍼 천이 궤도에서 S-Band TC & R 통신 링크 성능 분석)

  • Lee, Sun-Ik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1142-1155
    • /
    • 2014
  • The classical PCM/PSK/PM scheme has been commonly used for TC & R applications between satellites and ground stations in the S-band. We analyzed TC & R link performance between ground station and the geostationary satellite which employs PCM/PSK/PM, when the satellite are particularly on the Super Synchronous Transfer Orbit(SSTO). The satellite parameters on SSTO are assumed to be those operating on the geostationary orbit, considering heritage aspect. In the uplink, the results shown indicate that sufficient margins over 3 dB are obtained when the EIRP of ground station is greater than 65 dBW. The down link performance is of great interest. By adjusting the telemetry modulation index and ranging modulation index, we could obtain the required margin of 3.0 dB in the down link, and find out the minimum G/T of ground station. In conclusion, the previously operated ground stations during LEOP at COMS launch, can be operational when GEO injection is made using SSTO(65,000 km and 70,000 km).

GEO-KOMPSAT-2 LAE Burn Plan in Supersynchronous Transfer Orbit (정지궤도복합위성의 SSTO 액체원지점엔진 점화계획)

  • Park, Bong-Kyu;Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • GEO-KOMPSAT-2 which is under development by KARI to be launched in 2018 is expected to be injected into its orbit through the standard GTO(Geostationary Transfer Orbit) or SSTO(Supersynchronous Transfer Orbit). While the standard GTO mission has been applied for the most of the geostationary satellites, the SSTO mission is rare case and significantly different from the standard GTO mission in technical point of view. This paper lists the operational constraints to be applied for GEO-KOMPSAT-2 SSTO mission, and introduces a preliminary LAE burn plan for GEO-KOMPSAT-2 mission. In order to evaluate the developed plan, a simulation study has been performed considering ground station visibility.

Analysis Study of Liquid Apogee Engine Plume for Geostationary Satellite (정지궤도위성 궤도전이용 액체원지점엔진의 배기가스 해석 연구)

  • Lee, Chi Seong;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.8-15
    • /
    • 2018
  • The geostationary satellite uses a liquid apogee engine, to obtain a required velocity increment to enter a geostationary orbit. However, as the liquid apogee engine operates in the vacuum, a considerable disbursement of exhaust plume flow, from the liquid apogee engine can trigger a backflow. As this backflow may possibly collide with the satellite directly, it can cause adverse effects such as surface contamination, thermal load, and altitude disturbance, that can generate performance reduction of the geostationary satellite. So, this study investigated exhaust plume behavior of 400 N grade liquid apogee engine numerically. To analyze exhaust plume behavior in vacuum condition, the DSMC (Direct Simulation Monte Carlo) method based on Boltzmann equation is used. As a result, thermal fluid characteristics of exhaust plume such as temperature and number density, are observed.

ANTENNA POINTING TO THE GEO SATELLITE USING CONVERTED NORAD TLE FROM OSCULATING ORBITAL ELEMENTS (접촉궤도요소로부터 변환된 NORAD TLE를 이용한 정지위성의 안테나 포인팅)

  • Lee, Byoung-Sun;Kim, Hae-Yeon;Hwang, Yoo-La;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • Antenna pointing analysis for a geostationary satellite has been performed for using the NORAD Two-Line-Elements (TLE) converted from osculating Keplerian orbital elements. In order to check the possibility of the reception of the satellite signal, the antenna offset angles have been derived for the Communications, Ocean, and Meteorological Satellite (COMS) which carries out weekly East-West and North-South station-keeping maneuvers and twice a day thruster assisted momentum dumping. Throughout the analysis, it is shown that the use of converted NORAD TLE simplifies the antenna pointing related interfaces in satellite mission control system. For a highly eccentric transfer orbit cases, further analysis presents that the converted NORAD TLE from near apogee gives more favorable results.

The Battery balancing of Communication, Ocean and Meteorological Satellite (통신해양기상위성의 배터리 밸런싱)

  • Kim, Eui-Chan;Koo, Ja-Chun;Park, Sung-Woo;Lee, Hak-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2023-2024
    • /
    • 2011
  • 2010년 6월 27일 우리나라 첫 정지궤도 실용위성인 통신해양기상위성이 발사되어 천이궤도를 거쳐 36,000km 고도의 정지궤도에서 정상적으로 운용중에 있다. 이 위성은 식(eclipse) 기간에서의 전력공급을 위해 배터리가 장착되어 있는데, 과충전 방지와 성능을 제대로 수행하기 위해서는 셀 모듈전압의 차이를 일정한 수준이하로 만들어주는 밸런싱을 하여야 한다. 이 논문에서는 통신해양기상위성의 배터리 구성과 밸런싱 결과를 보여준다.

  • PDF

A Study on the Station Relocation of the Koreasat (무궁화위성의 궤도재배치에 관한 연구)

  • Lee, Sang-Cherl;Park, Bong-Kyu;Kim, Bang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.87-93
    • /
    • 2002
  • In general, station relocation for a geostationary orbit satellite is formulated as a request for moving the spacecraft from its present longitude to the target longitude within a given time interval. The station relocation maneuver is composed of drift orbit insertion maneuver and target orbit insertion maneuver. During station relocation, the satellite orbit is continually influenced by the non-spherical geo-potential. When we plan a maneuver, if we do not consider the influence, the satellite may not be relocate to desired longitude successfully. To solve this problem, we applied the linearised orbit transfer equation to acquire maneuver time and delta-V. Nonlinear simulation for the station relocation of multiple satellites is performed in order to verify the distance between two satellites.

Performance Analysis of Low Earth Orbit Satellite Communication Systems Under Multi-path Fading Environments (다중경로 페이딩 환경하에서의 저궤도 위성통신시스템 성능 분석)

  • Hae-uk Lee;Young-bin Ryu;Hyuk-jun Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.410-416
    • /
    • 2023
  • Unlike geostationary satellite communication systems, low-earth orbit(LEO) satellite communication systems move at relatively high speeds, and the angle with the ground device is not fixed and varies over a wide range. The propagation channel condition between satellites and ground nodes cannot be assumed line of sight(LOS) anymore. This paper analyzes the low-orbit multi-path fading satellite channel model that can occur in LEO satellite communication systems and Doppler frequency transition caused by high-speed maneuvering of LEO satellites and presents effective equalization techniques for OFDM and SC-FDE transmission methods suitable for multi-path frequency selective fading satellite channel models. In addition, this paper compares and analyzes the performance of OFDM and SC-FDE transmission methods in multipath fading LEO satellite channel environment using the proposed equalization techniques through simulations. Simulation results showed that SC-FDE outpeformed OFDM.