• Title/Summary/Keyword: 정지비행 로터

Search Result 35, Processing Time 0.031 seconds

Verification of Hovering Rotor Analysis Code Using Overlapped Grid (중첩격자를 이용한 제자리비행 로터 해석 코드의 수치특성)

  • Kim, Jee-Woong;Park, Soo-Hyung;Yu, Yung-Hoon;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.719-727
    • /
    • 2008
  • A 3-D compressible Navier-Stokes solver using overlapped grids is developed to predict a flow-field around a hovering rotor. The flow solver is verified by a parametric study with the grid spacing of wake grid, spatial accuracy and turbulence model. Computations are performed with different Chimera grid systems. Computational results are compared with the experimental data of Caradonna et al. for both blade loading and the tip vortex behavior. Numerical results show good agreements with experiments for the distribution of surface pressure and tip vortex behavior. Pressure distributions over the blade have marginal differences for different numerical methods, whereas large discrepancies are seen in the prediction of the wake behavior. Results unexpectedly show that the vortex strength from an automated cut-paste Chimera grid is weaker than that from the conventional Chimera grid.

Aeroelastic Analysis of Bearingless Rotor Systems in Hover and Forward Flight (무 베어링 로터 시스템의 정지 및 전진 비행시 공력탄성학적 해석)

  • Lim, In-Gyu;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.503-508
    • /
    • 2007
  • In this study, the aeroelastic response and stability of bearingless rotors are investigated using a large deflection beam theory. The outboard main blade, flexbeam, and torque tube are all assumed to be an elastic beam undergoing arbitrary large displacements and rotations. The finite element equations of motion obtained from Hamilton's principle. Two-dimensional quasi-steady strip theory is used to evaluate aerodynamic forces. In hover, the modal approach method based on coupled rotating natural modes is used for the stability analysis. In forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The results of the full finite element analysis using the large deflection beam theory are compared with those of a previously published modal analysis using the moderate deflection-type beam theory.

AERODYNAMIC EFFECTS OF THE TAB ON A HOVERING ROTOR BLADE (정지비행 로터 블레이드에 부착된 탭의 공기역학적 효과)

  • Kang, H.J.;Kim, D.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2013
  • Numerical simulation was performed for the rotor blade with fixed tab in hover using an unstructured mesh Navier-Stokes flow solver. The inflow and outflow boundary conditions using 1D momentum and 3D sink theory were applied to reduce computational time. Calculations were performed at several operating conditions of varying collective pitch angle and fixed tab length. The aerodynamic effect of fixed tab length was investigated for hovering efficiency, pitching moment and flapping moment of the rotor blade. The results show that it affects linearly increasing on the pitching moment of the rotor blade but does not affect on the flapping moment. The required power is less than 45kw for ground rotating test in hover. Numerical simulations also show that the vortex generate not only from the tip of the rotor blade but also from the fixed tab on the rotor blade.

Development of Helicopter Chassis Dynamometer System for the Scaled Helicopter Ground Test (축소 헬기 지상시험을 위한 헬리콥터 섀시다이나모미터 개발)

  • Kim, Ick-Tae;Kim, Jae-Soo
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2012
  • This paper developed Helicopter Chassis Dynamometer System(HCDS) to perform the bench test of the scaled rotor blade and to design a scaled model helicopter flight test bed and accomplished the scaled helicopter ground test. The scaled helicopter should be checked the relation of thrust and power input to maintain regular RPM by collective pitch angle versus throttle input. It showed hovering performance results of IGE with OGE, the max. F.M. was 0.76 without ground effect. The results of the chassis dynamometer test of scaled helicopter will usefully apply to design the scaled helicopter and evaluate the rotor blade performance.

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.217-228
    • /
    • 2004
  • This paper presents the rotating test techniques and the results of the roating test of the small-scaled hingeless rotor system with composite paddle blades in hover and forward flight conditions. The small-scaled rotor system was designed using froude-scaled properties of full scale rotor system. Metal flexures and composite flexures were made as hub flexures by the same dynamic properties of rotor system. The rotating tests of hingeless rotor system installed in GSRTS at KARI were carried out to get lead-lag damping ratios and aerodynamic loads of the hingeless rotor system. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. 6-components balance was installed between hub and main shaft and straingauges on blades were instrumented for the measurements of aerodynamic loads of rotor system. Tests were performed on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively.

  • PDF

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

NUMERICAL TECHNIQUES FOR HOVERING ROTOR PERFORMANCE ANALYSIS (호버링 로터 성능해석을 위한 수치기법 연구)

  • Kim, C.W.;Park, Y.M.;Jang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.151-154
    • /
    • 2006
  • In the present paper, hovering performance analyses of proprotor and helicopter rotor blades were performed by using FLUENT software. As a proprotor, TRAM(Tilt Rotor Aeroacoustic Model) was selected and performance analysis was carried out with mesh adaptation for more elaborate solution. As a helicopter rotor blades, two bladed Caradonna and Tung's rotor and four-bladed BO-105 helicopter rotor blades were selected. In case of Caradonna and Tung's rotor, vortex trajectory was compared with experimental data to inspect the vortex convection capability of the present flow solver. For the final case, performance of BO-105 helicopter rotor blades was investigated and compared with experimental data. After performance analyses of proprotor and helicopter rotors, it was shown that the present solver showed reasonable vortex strength, wake geometry and thurst coefficient distributions. But power coefficient was somewhat overestimated about $10%{\sim}15%$ regard less of mesh adaptation.

  • PDF

System Modeling and Waypoint Guidance Law Designing for 6-DOF Quadrotor Unmanned Aerial Vehicle (6-자유도 쿼드로터 무인항공기의 모델링 및 유도기법 설계)

  • Lee, Sanghyun;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • As avionics and mechanical devices have been developed, the size of unmanned aerial vehicle (UAV) is getting smaller. However, the complicated and accurate missions are provided to the UAV. Among various types of UAVs, quadrotors are widely used for their availability by virtue of simple structure and hovering function. However, the control of quadrotor is highly constrained, because the quadrotor is an under-actuated system which has only 4 actuator inputs. To deal with this under-actuated problem, a new quadrotor model with two more actuators in addition to the 4 propeller inputs is provided to make the system fully-actuated. For the proposed model, a controller is designed using feedback linearization methods. To validate the model and to verify the performance of the proposed controller, numerical simulation is performed.

Dynamic Performance Simulation of the Propulsion System for the CRW-Type UAV Using SIMULINK (SIMULINK를 이용한 CRW-type UAV 추진시스템의 동적 성능 모사에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including main and rotary ducts, the nozzle subsystem including main and tip jet nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. Transient simulation performance utilized the ICV (Inter-component volume) method and simulated using the SIMULINK. Transient performance analysis was performed on 3 cases. Fuel flow schedules to accelerate from Idle to maximum rotational speed were divided into the step increase of the most severe case and ramp increase cases to avoid the overshoot of turbine inlet temperature, and variations of thrust and the turbine inlet temperature were investigated in some transient analysis cases.

AERODYNAMIC ANALYSIS AND OPTIMIZATION STUDY OF THE HELICOPTER ROTOR BLADE IN HOVERING FLIGHT (정지비행시 헬리콥터 로터 블레이드의 공력해석 및 최적화)

  • Je, S.E.;Jung, H.J.;Kim, D.J.;Joh, C.Y.;Myong, R.S.;Park, C.W.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.125-129
    • /
    • 2007
  • In this paper a method for the design optimization for helicopter rotor blade in hover is studied Numerical analysis of aerodynamic characteristics of the flow around a rotor blade is analysed by usign panel method and CFD code based on Navier-Stokes equation. The result is validated by comparing with existing experimental result. Optimization methods RSM(Response Surface Method) and DOE(Design of Experiments) are applied in combination. The object functions are power, twist angle, taper ratio, and thrust. The optimized result showed a decrease of 17% of the power required.

  • PDF