• Title/Summary/Keyword: 정전선별

Search Result 47, Processing Time 0.027 seconds

정전선별법에 의한 폐플라스틱의 재질 분리

  • 박철현;전호석;백상호
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.124-125
    • /
    • 2003
  • 본 연구에는 대부분 매립이나 소각에 의해 처리되고 있는 폐플라스틱을 재활용할 수 있는 선별기술 개발을 목적으로 물리적 선별 방법인 마찰하전형정전선별법을 이용해 플라스틱 재질분리 실험을 수행하였다. 이때 PVC와 ABS 분리 실험의 최적조건은 전극판의 전극 세기 20,000 (volt) 이상, 공기압 2(kg/$\textrm{cm}^2$), 입도 2mm이하, 습도함량이 40% 이하였으며, ABS grade와 recovery가 각각 약 98%와 97%, PVC 함량 2% 이하인 선별기술을 개발하였다.

  • PDF

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

Development of New Techniques of Electrostatic Separation for Using of Clean Coal (청정석탄(淸淨石炭) 이용(利用)을 위한 정전선별(靜電選別) 기술개발(技術開發))

  • Baek, Sang-Ho;Jeon, Ho-Seok;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.54-61
    • /
    • 2005
  • In 2006, the coal usage that is used as energy source of power plant will meet 16,000 MW which is 30% of the whole energy usage. A Coal deposits among the fossil fuels is very plentiful in natural resources and has high economical efficiency but application technique is very inconvenient. Also when burned for utilization, it generate various toxic and untoxic air pollution materials; fly ash, bottom ash, sulfurous acid gas etc. In this study, we could establish a preparation of clean coal by triboelectrostatic separation. In this study, we made a bench-scale's triboelectrostatic separation equipment using electrostatic technology, and got an optimum conditions of various factors for increasing recovery rate and purification in separation. A test result, we got a clean coal that recovery rate is 68.10%, rejection rate of ash and sulfur content is 31.23% and 28.33%.

The Development of Electrostatic Separation Technique for Recycling of Life Circles Waste Plastic (생활계 폐플라스틱 재활용을 위한 정전선별 기술개발)

  • Jeon Ho-Seok;Park Chul-Hyun;Kim Byoung-Gon;Park Jai-Koo
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.28-36
    • /
    • 2006
  • The development of material separation technique for waste plastic recycling are the necessary situation restricted by law the reclamation and incineration of waste plastic after 2004, with enforcement of EPR (Extended Producer Responsibility) system. As the this study is the research on the development of electrostatic separation techniques for recycling of life circles waste plastic by development of charging material and charger, the separation efficiency can be improved. Therefore, we developed the charger and electrostatic separator to increase charging efficiency and material separation per object plastics, rising these equipments, we removed PVC up to $99\%$ from two kinds of mixed plastics. And in case of restricting PVC content such as PET, we developed the separation technique that can remove PVC up to $99.99\%$ from PET with PET recovery about $80\%$. Also, as we separated over $98\%$ for three kinds of mixed plastics, and then established material separation technique to increase recycling of plastic.

The Development of Electrostatic Separation Technique for Recycling of Life Circles Waste Plastic (생활계 폐플라스틱 재활용을 위한 정전선별 기술개발)

  • Jeon, Ho-Seok;Park, Chul-Hyun;Kim, Byoung-Gon;Park, Jai-Koo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.23-33
    • /
    • 2005
  • The development of material separation technique for waste plastic recycling are the necessary situation according to restrict by law the reclamation and incineration of waste plastic after 2004 year, pith enforcement of EPR (Extended Producer Responsibility) system. As the this study is the research on the development of electrostatic separation techniques for recycling of life circles waste plastic, it can improve separation efficiency according to development of charging material and charger. Therefore, we developed the charger and electrostatic separator to increase charging efficiency and material separation per object plastics, using these equipments, we removed PVC up to 99% from two kinds of mixed plastics. And in case of restricting PVC content such as PET, we developed the separation technique that can remove PVC up to 99.99% from PET with PET recovery about 80%. Also, as we separated over 98% for three kinds of mixed plastics, and then established material separation technique to increase recycling of plastic.

  • PDF

Development of Triboelectrostatic Separation Technique for Recovery of Nylon from Radiator of End-of-Life Vehicle (폐자동차(廢自動車) 라디에이터로부터 Nylon 회수(回收)를 위한 마찰하전정전선별(摩擦荷電靜電選別) 기술개발(技術開發))

  • Baek, Sang-Ho;Jeon, Ho-Seok;Kim, Su-Gang;Lee, Kwang-Hoon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The study on the recovery of Nylon from a radiator of End-of-Life Vehicle was conducted by using triboelectrostatic separation technique. For the effective separation of the sample(Nylon, PP glass), charge polarity and amount of each sample with various charging materials have been investigated by faraday cage. And then, charging material was selected as carrying out basic separation experiments with materials that can be possible to polarize samples. Finally, the continuos type triboelectrostatic separator was developed with selected charging material and the recovery possibility of the sample was confirmed as carrying out various separation experiments.

Development of Tribo-electrostatic Separation Technique for Scale-up Process of Heavy Group Plastic Tailings (고비중(高比重) 종말품(終末品) 폐(廢)플라스틱 대량처리(大量處理)를 위한 마찰하전(摩擦荷電) 정전선별(靜電選別) 기술개발(技術開發))

  • Park, Chul-Hyun;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Bong-Gon
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.30-38
    • /
    • 2009
  • In this research, we studied the scale-up triboelectrostatic process for separation of PVC from higher gravity fraction of plastic wastes produced from wet gravity separation process. High density polyethylene (HDPE) was found to be the most effective materials for a tribo-charger in the separation of plastic tailings. In a commercial scale triboelelctrostatic separator unit, using the HDPE pipe-line charger, a grade of 99.1% with PET, PS and others and a recovery of 86% was obtained under optimum conditions at over 250 kV/m electric field, a splitter position of -8 cm from the center, and less than 40% relative humidity. The developed unit can process the plastic wastes at a 300 kg/h, and the product can be utilized as RPF or RDF of over grade 2.

Physical Treatment for Recycling Commercialization of Spent Household Batteries (가정용(家庭用) 폐건전지(廢乾電池)의 재활용(再活用) 상용화(商用化)를 위한 물리적(物理的) 처리(處理))

  • Park, Jin-Tae;Kang, Jin-Gu;Sohn, Jeong-Soo;Yang, Dong-Hyo;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.48-55
    • /
    • 2006
  • This study was carried out for establishing the physical recycling technique for commercializing process on household batteries. The procedure involves shape separator, crushing, magnetic separation, classification and eddy current separation in sequence. The separation capacity was 400-600 unit cell/hr with shape separation system. The impurities such as manganese and zinc in the magnetic product were below 0.1% respectively, the concentration of iron was above 99% in spent carbon zinc battery. Also non-magnetic products are composed of 22-30% En, 16-22% Mn, 1-3% Fe in the case oi spent zinc carbon battery. The amounts of other components such as carbon rod, plastics and separator were about 37-50%. From the eddy current separation of nonferrous products, the plate-type zinc components were separated up to 96% with 2,250-2,750 meter/min of the conveyor speed.