• Title/Summary/Keyword: 정적 힘 최적화

Search Result 4, Processing Time 0.018 seconds

Algebraic Force Distribution in Hexapod Walking Robots with a Failed Leg (고장이 존재하는 육족 보행 로봇을 위한 대수적 힘 분배)

  • Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.457-463
    • /
    • 2009
  • In this paper, a novel foot force distribution algorithm for hexapod walking robots is presented. The considered hexapod robot has fault-tolerant tripod gaits with a failed leg in locked-joint failure. The principle of the proposed algorithm is to minimize the slippage of the leg that determines the stability margin of the fault-tolerant gaits. The fault-tolerant tripod gait has a drawback that it has less stability margin than normal gaits. Considering this drawback, we use the feature that there are always three supporting legs, and by incorporating the theory of Zero-Interaction Force, we calculate the foot forces analytically without resort to any optimization technique. In a case study, the proposed algorithm is compared with a conventional foot force distribution method and its applicability is demonstrated.

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation (자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계)

  • Lee, Hakjun;Ahn, Dahoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.792-800
    • /
    • 2021
  • This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.

Numerical Study on Designing Truncated Mooring Lines for FPSO Stability Analysis (FPSO 안정성 평가를 위한 절단계류선 모델링 수치 연구)

  • Kim, Yun-Ho;Cho, Seok-Kyu;Sung, Hong-Gun;Seo, Jang-Hoon;Suh, Yong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.387-395
    • /
    • 2014
  • In this paper, a numerical analysis for an internal turret moored vessel located at a 400-m water depth is conducted. The target vessel has an internal turret that is located at the 0.2 Lpp position from the fore-side, with $3{\times}4$ complex mooring lines installed around the turret circumference. To investigate the motion response of the vessel and the structural reliability of the lines, model tests were conducted. The KRISO ocean basin has a water depth of 3.2 m, which represents 192m using a scaling of 1:60. In order to precisely represent the real-scale condition, equivalent mooring lines needed to be designed. Truncated mooring lines were designed to supplement the restriction of the flume's water depth and increase the reliability of the model testing. These truncated mooring lines were composed of two different chains in order to match the pre-tension, simultaneously restoring the curve and variation in the effective line tension. The static similarities were compared using a static pull-out test and free decaying test, and the dynamic similarities were matched via a regular wave test and combined environments test. Consequently, the designed truncated mooring system could represent the prototype mooring system relatively well in the aspects of kinematics and dynamics.

Shape Design Optimization of Electrode for Maximal Dielectrophoresis Forces (최대 유전영동력을 위한 전극의 형상 최적설계)

  • Jeong, Hong-Yeon;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • A continuum-based design sensitivity analysis(DSA) method is developed for electrostatic problems. To consider high order objective functions, we use 9-node finite element basis functions for analysis and DSA methods. As the design variables are parameterized with B-spline functions, smooth boundary variations are naturally obtained. To solve mesh entanglement problems during the optimization process, a mesh regularization scheme is employed. By minimizing the Dirichlet energy functional, mesh uniformity can be automatically achieved. In numerical examples for maximizing dielectrophoresis forces, the numerical results are compared with well-known electrode geometries and the obtained characteristics are discussed.