• Title/Summary/Keyword: 정적 컴플라이언스

Search Result 15, Processing Time 0.024 seconds

유전 알고리즘 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 최적설계

  • 박현만;최영휴;김동석;하상백;이상직
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.321-321
    • /
    • 2004
  • 본 연구에서는 웨이퍼 단면 연삭기 구조물의 경량화 고강성화 최적설계를 위하여 가변벌점함수 유전 알고리즘을 이용한 다단계 최적설계 방법을 적용하였다. 구조강성 최대화와 중량 최소화라는 상반된 성질의 목적함수를 최적화하기 위하여 강성의 역수 개념인 컴플라이언스(compliance)를 도입하여 목적함수론 최소화시키는 문제로 만들었으며, 가증방법(weighted method)을 이용하여 다목적 함수를 단일 목적함수로 변환시켰다. 부재 단면형상 최적화 단계와 정적설계 최적화 단계, 및 동적 설계 최적화 단계를 순차적으로 수행하는 다단계 최적설계를 방법을 연삭기 구조물의 최적설계에 적용하였다.(중략)

  • PDF

Structural Analysis and Dynamic Design Optimization of a High Speed Multi-head Router Machine (다두 Router Machine 구조물의 경량 고강성화 최적설계)

  • 최영휴;장성현;하종식;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.902-907
    • /
    • 2004
  • In this paper, a multi-step optimization using a G.A. (Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a 5-head route machine. Our design procedure consist of two design optimization stage. The first stage of the design optimization is static design optimization. The following stage is dynamic design optimization stage. In the static optimization stage, the static compliance and weight of the structure are minimized simultaneously under some dimensional constraints and deflection limits. On the other hand, the dynamic compliance and the weight of the machine structure are minimized simultaneously in the dynamic design optimization stage. As the results, dynamic compliance of the 5-head router machine was decreased by about 37% and the weight of the structure was decreased by 4.48% respectively compared with the simplified structure model.

  • PDF

Static and Dynamic Fracture Toughness Evaluation in SiCp/6061Al Composite (SiCp/6061Al복합재료의 정적 및 동적파괴인성 평가)

  • An, Haeng-Geun
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.565-570
    • /
    • 1998
  • SiCp/6061AI 복합재료의 파괴인성을 평가하기 위하여 정적파괴인성에 대해서는 복수시험편법을, 동적파괴인성시험에 대해서는 stop block법을 실시하였다. 주균열은 예비균열의 선단에서 시험편두께방향 전역에 걸쳐서 일시에 발생하는 것이 아니고, 균열발생의 초기단계에서 국부적으로 형성된 균열이 시험편두께방향으로의 균열의 확장을 완료한 후 주균열로 이행해 간다. 정적 및 동적시험에서 컴플라이언스변화율법에 의해 검출된 균열발생점은 균열확장의 완료점과 거의 일치하고 있기 때문에 본 재료의 파괴인성 결정에 유효하다. 본 재료에서 동적파괴인성치는 정적파괴인성치보다 크게 나타났다. 이것은 동적충격시 입자파괴에 의한 에너지의 흡수.분산효과와 균열진전경로의 큰 편향에 기인한다고 생각된다.

  • PDF

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Structural Behavior on the Externally Strengthened Bridge Deck with Glass Fiber Reinforced Polymer (유리섬유보강재로 외부부착 보강된 교량 바닥판의 구조거동)

  • 오홍섭;심종성;최장환
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.922-933
    • /
    • 2002
  • Since the deterioration of concrete bridge decks affect durability, safety, and function, structural rehabilitation of damaged concrete deck that was strengthened with Fiber Reinforced Polymer(FRP) is increasing the latest. But recent studies on the strengthened structures are focused on the static behavior, however only a few studies on the fatigue behavior are performed. In this study, static and fatigue behavior of strengthened deck were peformed on 11 deck specimens strengthened with sheet typed Glass Fiber Reinforced Polymer(GFRP) that were reinforced by two different strengthening methods for the static test. A amount of strengthening material in the each direction such as transverse and longitudinal was adopted experimental variables for the static test and also the stress level of the static maximum load are adopted for the fatigue test. By the results of the experimental study, with respect to the strengthened decks, the resistance effect of crack propagation and effect of stress distribution are improved. In addition, the rate of variation of compliance decreased.

Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations (마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계)

  • Jang, Sung-Hyun;Kwon, Bong-Chul;Choi, Young-Hyu;Park, Jong-Kweon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.