• Title/Summary/Keyword: 정적연소실

Search Result 50, Processing Time 0.02 seconds

A Study on the Combustion Characteristics of Methane-air Mixture in Constant Volume Combustion Chamber (정적 연소실내의 메탄-공기 혼합기의 연소 특성에 관한 연구)

  • 이창식;김동수;오군섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.201-209
    • /
    • 1996
  • This study describes the combustion characteristics of methance-air mixture with various equivalence retio and initial conditions of mixture in constant volume combustion chamber. Combustion characteristics of methane-air mixture such as combustion pressure, combustion temperature, and heat release were investigated by the measurement of combustion pressure and temperature in the combustion chamber. The results show that maximum combustion pressure, gas temperature and rate of heat release have peaks at equivalence ratio of 1.1. Combustion duration is also the shortest at the equivalence ratio of 1.1 and it is shortened as initial mixture temperature increases.

  • PDF

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Characteristics of Premixed Flame Propagations of R134a/Methane in a Constant Volume Combustion Chamber (정적 연소실 내 R134a 및 메탄 예혼합 화염의 전파 특성)

  • Choi, Byung Chul;Park, June Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The characteristics of the outward-propagating premixed flames of stoichiometric mixtures of R134a/methane/oxygen/nitrogen have been experimentally investigated in a constant volume combustion chamber. Three regimes of the expanding flames were categorized based on the flame behavior.

  • PDF

Combustion Characteristics of Volume Variation of Torch in a CVCC (토치 점화 장치의 체적에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.166-170
    • /
    • 2010
  • Six different size of torch-ignition device were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The torch-ignition device was designed six different volumes and same orifice size. The combustion pressures were measured to calculate the mass burn fraction and combustion enhancement rate. In addition, the flame propagations were visualized by shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burn fraction were increased when using the torch ignition device. And the combustion duration were decreased. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition device the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage. And the initial flame propagation was effected torch-ignition volume.

  • PDF

Constant Volume Premixed Combustion Characteristics of Dimethyl Ether and LPG Fuel (DME와 LPG 연료의 정적 예혼합 연소특성)

  • 김태권;임문혁;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.83-88
    • /
    • 2003
  • Measurements on the combustion characteristics of dimethyl ether(DME:$CH_3$O$CH_3$) as compared with LPC in constant volume combustion chamber have been conducted. The DME is a good alternative fuel having oxygen component in fuel. To elucidate the combustion characteristics of dimethyl ether as a fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios(Ø), and initial Pressures of fuel-air mixture. In the case of DME, the NOx concentration peaks in leu flame Ø = 0.85~0.9, and $CO_2$ concentration peaks at Ø=1.1, while the CO concentration abruptly rises at the condition of fuel-rich mixtures.

Flame Propagation in a Micro Vessel under Excessive Heat Loss (과도한 열손실을 수반하는 초소형 정적연소실 내 화염전파)

  • Na, Han-Bee;Choi, Kwon-Hyoung;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.95-98
    • /
    • 2002
  • A numerical investigation on the flame propagation and extinction in a micro combustor is described. Previous measurements of $H_2-air$ flame propagation in a submilimeter scale combustor exhibited significance of wall effects on burning velocity and extinction. The heat transfer to wall becomes important not only in the cooling of burnt gases but also during the flame ropagation, which has be by and large ignored in macro scale combustor calculations. In order to take the heat loss into account the combustion calculation, we developed a numerical code with a heat transfer model that was determined empirically from measured data. PISO algorithm was used for differencing of conservation equations. $H_2-air$ reaction was modeled with 10 species - 16 steps. Comparison with measured data showed good agreement in flame propagation speed. Also the pressure decrease after flame extinction was accurately predicted by the model. A further study is desirable for a better quenching model that can predict the quenching location.

  • PDF

A study on the combustion characteristics according to evaporation rate of gasoline (가솔린 연료의 기화율 변화에 따른 연소 특성에 관한 기초 연구)

  • Lee, K.H.;Lee, C.S.;Shin, K.S.;Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.29-36
    • /
    • 1996
  • The present study systematically investigates the effect of evaporation rate on the combustion characteristics and the flame stabilization in a gasoline engine. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaparating a gasoline fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion duration were deteriorated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for gasoline fuel was strongly influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

Conceptual Design of Coolant Channel for Sub-scale Combustion Chamber (소형 연소기 냉각 유로 개념 설계)

  • 정용현;조원국;한상엽;류철성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • A numerical heat transfer analysis and the structural analysis were performed for the design of sub-scale combustion chamber's coolant passage. The heat flux through the combustion chamber wall was estimated by 2-D heat transfer analysis of compressible hot gas and the result was applied as a thermal boundary condition of 3-D analysis. The heat flux estimated by the present method agreed well with the experimental correlation and proved to be insensitive to cooling condition. So the same thermal boundary condition was applied for various operating conditions. The maximum temperature of combustion chamber wall was predicted by 3-D analysis for single coolant passage and the result will be used for the development of a regeneratively cooled combustion chamber. Also estimated were the stress distribution and structural safety of coolant passage through the static structural analysis.

The Effect of Combustion Promotion in Constant Volume Combustion Chamber with Sub-chamber (부실붙이 정적연소실의 연소촉진 효과)

  • 이상준;김삼석;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.569-577
    • /
    • 1992
  • The effect of combustion promotion in a constant volume combustion chamber with sub- chamber located in the vicinity of spark plug, was analyzed for variables such as sub- chamber volume and diameter of orifice, and was also compared and evaluated with that of the chamber with sub-chamber which spark plug was located in the sub-chamber. Consequently, it was shown that decrease of duration of combustion in the latter case was larger than in the former case, but comparing by rate of overall combustion promotion that duration of combustion and pressure were both considered, the optimum configuration factor and the effect of combustion promotion were almost same in both cases.

CO, $CO_2$ and NOx Emission Characteristics of Methane-Air Premixed Flame in Constant Volume Combustion Chamber (정적연소실에서 메탄-공기 예혼합화염의 CO, $CO_2$ 및 NOx 배출 특성)

  • 김태권;김성훈;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 2000
  • This paper presents the effects of initial pressure of mixture on CO, $CO_2$ and NOx emissions in constant volume combustion chamber. The CO, $CO_2,O_2,N_2$ concentrations in the chamber are determined by thermal conductivity detection (Gas-chromatograph) wile the NOx concentration is measured by chemiluminescent detection (NOx Analyser). Methane-air mixture is used as premixed fuel and the measurements are taken with equivalence ratios($\phi$) varing from 0.6 to 1.3, and initial pressures of methane-air mixture varing from 0.1MPa to 0.8MPa in constant volume combustion chamber. The NOx concentration steadily increases with increasing equivalence ratio, peaks in lean flame ($\phi$=0.85~0.9), and then rapidly decreases. However, as the initial pressure of mixture is increased, the equivalence ratio corresponding to the point of peak [NOx] shifts towards leaner conditions. This is caused by a similar shift in the peak [CH], which is caused by the variation with pressure and equivalence ratio of the rate of CH production from $CH_2$ and OH. The maximum combustion pressure peaks at $\phi$ =1.05 and the $CO_2$ concentration peaks at $\phi$=0.95~1.0 while the CO concentration rises sharply at the condition of fuel-rich mixtures. This is caused by complete combustion at $\phi$=0.95.

  • PDF