• Title/Summary/Keyword: 정적변위센서

Search Result 23, Processing Time 0.023 seconds

An Experimental Study on Functional Building Elements using Static Displacement Sensors and Radio Frequency (정적변위센서와 무선주파수를 이용한 기능성 건축부재에 관한 연구)

  • Kim, Dong-Hyun;Suk, Chang-Mok;Kim, Tae-Gon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.79-87
    • /
    • 2012
  • In this study, static displacement sensors using lead switches are bonded on concrete beams and RC beams, and monitoring systems to crack damages are studied using radio frequency. If load is received on the center of flexible specimens, bonded static displacement sensors will be destroyed, and these become to send signals of damages at radio frequency system connected with static displacement sensors. Study of these functional building elements will be protected from external factors by unusual weather, earthquake, etc, in RC buildings and structures.

A Study on the Damage Detect using Static Displacement Sensors in Concrete Elements (정적변위센서를 이용한 콘크리트부재의 손상검토)

  • Kim, Ie-Sung;Choi, Young-Wha;Kim, Dong-Hoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.157-158
    • /
    • 2011
  • The monitoring to crack damages is studied using the radio frequency system and static displacement sensors. If load is received on the center of the flexible specimen, bonded sensors will be destroyed, and these are become to send signals of damages at the radio frequency system connected with sensors. This study is fundamental research of the monitoring damage system for diagnostic concrete elements using the radio frequency system and static displacement sensors.

  • PDF

A Study on the Static Levitation Control of Magnetic Bearing using Optical Fiber Displacement Sensors (광파이버 변위 센서를 적용한 자기베어링 정적 부상 제어 연구)

  • 강종규;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-136
    • /
    • 2003
  • Five expensive sensors are necessary to control a magnetic bearing system. The sensor price rate of magnetic bearing system is high. So it is necessary that cheap and good sensor is developed. The optical fiber displacement sensor is adaptive to satisfy this condition. We can design magnetically suspended spindle based on static characteristic of optical fiber displacement sensor developed. The controller can be designed by decoupled feedback PD. Therefore, it is simpler than any other controller comparatively.

  • PDF

A Study on the Measurement and Application of Long Gauge fiber Brags Grating Sensors (긴 게이지 길이 광섬유 격자 센서의 측정과 응용)

  • Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • In this research, the fiber Bragg grating sensors with long gauge for displacement measurement in the long distance is developed and tested. The sensors show an accuracy and a capability for displacement measurement oin long distance. Monitoring using static logger of system of FBG sensor with strained optical fiber shows the capability of measurement in the harsh environment such as strong wind. Measurement of long distance displacement by optical fiber sensor if use $250{\mu}m$ optical fiber and impose some strong pre-tension shows possibility in monitoring of nuclear containment structure.

Applications of Displacement Response Estimation Algorithm Using Mode Decomposition Technique to Existing Bridges (모드분해기법을 이용한 변위응답추정 알고리즘의 실교량 적용)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.257-264
    • /
    • 2010
  • Generally, estimations on the displacement as an important factor in evaluating the safety of large structures could be a barometer assessing whether the condition of the structure is deteriorating. Practically, it is not easy how to measure the displacement response to large structures like suspension bridges. In this study, as a method for estimation displacement response from strain signals, mode decomposition technique is proposed. Total displacement response is estimated by superposing quasistatic displacement response and modal displacement responses in dominant modes with larger contributions after estimating the modal displacement responses. If foiled strain gauges are used to measure strain signals, there would likely to generate electric noise, what's more, the more measuring points there are the more economic burden it could be. In order to solve such problems, fiber optic bragg-grating(FBG) sensors were used, which have multi-point measurements with no effect on electric noises. Therefore, the experiment was performed through dynamic load test of suspension bridge and plate-girder bridge to review the possibility for using mode decomposition technique.

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

Application of Combined-Type Sensors for the Behavioral Measurement of Concrete Beams (콘크리트 보의 거동 측정을 위한 조합형 센서의 활용)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.454-461
    • /
    • 2003
  • This study addressed a procedure to carry out an experimental study on a behavior of simple and continuous concrete beams. For this purpose, sample concrete beams were fabricated and sensors for the measurement of strains and deflections were attached both on the surface of the beams and inside them. Two types of sensors were used to measure strains associated with loading: electric resistance strain sensors and fiber optic sensors. Displacement gauges were also attached on the bottoms of beams to investigate the behavior of beams more rationally. The behavior of the beams was then evaluated throughout the results measured from different sensors while they were subject to steady loading up to failure. From results of this study, it was found that concurrent use of sensors and displacement gauges is helpful in investigating the behavior of concrete beams more effectively. Especially, combined-type strain sensors specifically fabricated in this experiment were found not to be affected by the occurrence of cracks so significantly and to be very effective in monitoring strains of concrete structure. It was also observed that beams show nonlinear force-displacement relationship and reinforcing bars take charge of resisting the external force once cracks occur in concrete beams.

Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.507-515
    • /
    • 2008
  • In this study, a method predicting the displacement response of structures from the measured dynamic strain signal is proposed by using mode decomposition technique. Evaluation of bridge stability is normally focused on the bridge completed. However, dynamic loadings including wind and seismic loadings could be exerted to the bridge under construction. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. As previous studies on the prediction of displacement response by using the FBG sensors, the static displacement has been mainly predicted. For predicting the dynamic displacement, it has been known that the measured strain signal includes higher modes and then the predicted dynamic displacement can be inherently contaminated by broad-band noises. To overcome such problem, a mode decomposition technique was used. Mode decomposition technique estimates the displacement response of each mode with mode shape estimated to use POD from strain signal and with the measured strain signal decomposed into mode by EMD. This is a method estimating the total displacement response combined with the each displacement response about the major mode of the structure. In order to examine the mode decomposition technique suggested in this study model experiment was performed.

Behavior Analysis of a High Rise Building Using Kinematic GPS (Kinematic GPS를 이용한 초고층건물의 거동 분석)

  • 손홍규;박효선;최종현;김중경
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.85-91
    • /
    • 2002
  • 인공위성을 이용한 위치결정시스템인 GPS(Global Positioning System)는 mm 단위의 정밀도로 정적, 동적 위치관측이 가능한 시스템으로 현재 여러 분야에서 활용이 증가하고 있다. 특히 교량, 댐 등 안전이 요구되는 사회기반 시설물의 동적 거동을 기록하고 감시하는데 있어서 GPS가 새로운 관측시스템으로 주목받고 있으며 이를 실용화하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 GPS를 이용하여 건물의 거동상태를 점검 하는 것을 목적으로 하고 있다. 초고층건물의 거동을 해석하기 위하여 건물 옥상에 GPS, 가속도계, 풍향계, 풍속계를 설치하였다. GPS와 가속도계를 이용하여 건물의 변위 및 가속도를 5Hz로 관측하였다. GPS를 이용한 변위관측은 1시간, 1분, 1초 등의 간격으로 3차원 변위를 계산하였으며, 계산된 3차원 변위를 가속도계, 풍속계, 풍향계와 연계하여 해석하였다. 대상 건물에 대한 최대 변위를 관측한 결과 시공 단계에 따라 큰 차이를 보였으며 건물의 안정성을 평가할 수 있는 척도인 건물의 고유 진동수의 경우 약 0.2Hz의 값을 얻을 수 있었다. 향후 모든 센서들을 통합하여 실시간으로 건물을 모니터링할 수 있는 시스템을 개발할 경우 건물의 안정성 해석 및 유지보수에 본 연구가 큰 기여를 할 수 있을 것으로 사료된다.

  • PDF

Behavior Monitoring System of a High Rise Building Using GPS (GPS를 이용한 초고층건물의 거동 모니터링시스템)

  • Sohn, Hong-Gyoo;Park, Hyo-Sun;Kim, Won-Dae;Kim, Jung-Kyoung
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.17-22
    • /
    • 2002
  • 인공위성을 이용한 위치결정시스템인 GPS(Global Positioning System)는 mm 단위의 정밀도로 정적, 동적 위치관측이 가능한 시스템으로 현재 여러 분야에서 활용이 증가하고 있다. 특히 교량, 댐 등 안전이 요구되는 사회기반 시설물의 동적 거동을 기록하고 감시하는데 있어서 GPS가 새로운 관측시스템으로 주목받고 있으며 이를 실용화하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 GPS를 이용하여 건물의 거동상태를 점검 하는 것을 목적으로 하고 있다. 계절풍에 의한 초고층건물의 거동을 해석하기 위하여 건물 옥상에 GPS, 가속도계, 풍향계, 풍속계를 설치하였다. GPS와 가속도계로를 이용하여 건물의 변위 및 가속도를 5Hz로 관측하였다. GPS를 이용한 변위관측은 1시간, 1분, 1초 등의 간격으로 3차원 변위를 계산하였으며, 계산된 3차원 변위를 가속도계, 풍속계, 풍향계와 연계하여 해석하였다. 대상 건물에 대한 최대 변위를 관측한 결과 계절에 따라 큰 차이를 보였으며 건물의 안정성을 평가할 수 있는 척도인 건물의 고유 진동수의 경우 약 0.2Hz의 값을 얻을 수 있었다. 향후 모든 센서들을 통합하여 실시간으로 건물을 모니터링할 수 있는 시스템을 개발할 경우 건물의 안정성 해석 및 유지보수에 본 연구가 큰 기여를 할 수 있을 것으로 사료된다.

  • PDF