• Title/Summary/Keyword: 정사각형 밀폐공간

Search Result 15, Processing Time 0.021 seconds

Analysis of Natural Convection and Radiation Heat Transfer in a Square Enclosure by Spherical Harmonics Approximation (구 조화 근사법에 의한 정사각형 밀폐공간내의 자연대류-복사열전달 해석)

  • 차상명;김창기;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1021-1029
    • /
    • 1991
  • 본 연구에서는 2차원 정사각형 밀폐공간내에서 흡수 및 방사하는 회기체에 대 한 자연대류-복사 열전달을 P-1 및 P-3 근사법을 이용하고 수치해석을 통하여 유동 및 열전달 특성을 연구하였고 Plank 수, 광학두께 및 벽방사율의 영향을 조사하였다. 또한 P-3 근사해와 비교함으로써 P-1 근사해의 적용범위를 고찰하였다.

Experimental Study for Natural Convection Flow in an Inclined Partitioned Square Enclosure (격판이 존재하는 경사진 정사각형 밀폐공간 내의 자연대류유동에 관한 실험적 연구)

  • Kim, Gwang-Hui;Kim, Yu-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.310-317
    • /
    • 2002
  • In the present study, an experimental study of natural convection in a partitioned 2D square enclosure has been carried out. The square enclosure consist of two adiabatic vertical walls and the upper cold and the lower hot walls. A partition is positioned perpendicularly at the center of the left vortical insulated wall. The PIV measurements were performed with the variations of Rayleigh number, partition length and inclination of the enclosure. The working fluid is water with Prandtl number of 6.996 at 20$\^{C}$. The captured images were analyzed by using a cross-correlation (two-frame/single-exposure) PIV method.

Natural Convection Heat Transfer from a Hot Body in s Square Enclosure (정사각형 밀폐공간 내에 있는 고온부로부터의 자연대류 열전달)

  • Kwon, S.S.;Chung, T.H.;Kwon, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.147-154
    • /
    • 1992
  • Laminar natural convection heat transfer from a hot body in a square enclosure has been studied for various center positions of a hot square at Grashof number $Gr=1.5{\times}10^5$, Prandtl number Pr=0.71 and dimensionless thermal conductivity $k_g/k_f=14710$. The natural convection at the center position of a hot square; $X_c$, $Y_c=0.5$, 0.2 shows the most strong and at $X_c$, $Y_c=0.5$, 0.7 the most weak. The total mean Nusselt number at $X_c$, $Y_c=0.5$, 0.2 was 7.4% higher than that at $X_c$, $Y_c=0.2$, 0.5. The total mean Nusselt number at $X_c$, $Y_c=0.5$, 0.7 was 5.0% lower than that at $X_c$, $Y_c=0.3$, 0.5.

  • PDF

PIV Measurement of Natural Convection in a Square Partitioned Enclosure (격판이 존재하는 정사각형 밀폐공간내의 자연대류에 대한 PIV 계측)

  • Kim, Kwang-Hee;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.708-713
    • /
    • 2001
  • The paper presented some results of a experimental study of natural convection in partitioned 2D square enclosure. The square enclosure consist of two adiabatic vertical walls and the upper cold and the lower hot walls. A partition is positioned perpendicularly at the center of left vertical insulated wall The PIV mesaurements were performed with the variations of the partition length and inclination of enclosure. The working fluid is water with a Prandtl number of 6.996 at $20^{\circ}C$ temperature. A captured images were calculated by using a Cross-Correlation(Multi-frame/Single-exposure) method.

  • PDF

Natural Convection Heat Transfer from a Hot Body in an Inclined Square Enclosure (경사진 정사각형 밀폐공간 내에 있는 고온부로부터의 자연대류 열전달)

  • Kwon, Sun-Sok;Chung, Tae-Hyun
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 1992
  • Laminar natural convection heat transfer from a hot body in a square enclosure has been stooled for various inclination angles at $Gr=1.5{\times}10^5$, Pr= 0.71 and $k_s/k_f=14710$. The area of a hot body is 1/25 of the enclosure and the aspect ratio is 1.0. The total mean Nusselt number decreases as the inclination angle increases and in case of ${\theta}=90^{\circ}$ is 14% lower than that of ${\theta}=0^{\circ}$.

  • PDF

Numerical Analysis of Natural Convection and Surface Radiation in a Square Enclosure (정사각형 밀폐공간내에서의 자연대류와 표면복사의 수치해석)

  • 권용일;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.983-991
    • /
    • 1992
  • This investigation is carried out numerically for the two dimensional natural convection and surface radiation heat transfer in a square enclosure. The bottom and top walls are isothermal at hot and cold temperatures respectively whereas the left and right side walls are adiabatic except a transparent window on the right side partially. The exchange of radiant energy is obtained by the net radiation method and the shape factor by the crossed string method. The changes in temperature and Nusselt number distributions of the walls due to the surface radiation and insolation are also investigated.

Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition (수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달)

  • 정인기;김점수;송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

Oscillatory Motion of Natural Convection in a Square Enclosure with a Horizontal Partition (정사각형 밀폐공간내에서 수평격판에 의한 자연대류의 진동현상)

  • Kim, J.S.;Chung, I.K.;Song, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 1993
  • An oscillatory motion of natural convection in a two-dimensional square enclosure fitted with a horizontal partition is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection has perfectly shown the periodicity with the decrease of Rayleigh number, and the stability was reduced to a chaotic state with the increase of Rayleigh number. The period of oscillation gets shorten with the decrease of the partition length and the increase of Rayleigh number. The frequency of oscillation obtained by the variations of stream function is more similar to the experimental results than that of the average Nusselt number. The stability of oscillation grows worse with the increase of Rayleigh number. The transition Rayleigh number for the chaos is gradually decreased with the increase of the partition length.

  • PDF

An investigation of laminar natural convection in a square partitioned enclosure (수평격판으로 분리된 정사각형 밀폐공간내의 층류 자연대류 해석)

  • Kim, J.S.;Chung, I.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.312-322
    • /
    • 1997
  • The natural convective flow in a two-dimensional square enclosure with horizontal partitions is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and two identical partitions were positioned perpendicularly at the mid-height of the right and left walls, respectively. The governing equations are solved by using the finite element method with Galerkin method. Calculations are made for different partition lengths, partition conductivites, and Rayleigh numbers based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). An oscillatory motion of the natural convective flow is affected significantly by the variation of the gap width and Rayleigh number. When the gap width is comparatively short, the heat transfer rate is raised with the increase of the thermal conductivity of partitions. However, for sufficiently large gap widths at higher Rayleigh numbers, the average Nusselt numbers of the conductive partitions are smaller than those of the adiabatic partitions.

  • PDF

Natural Convection Heat Transfer and Flow Characteristics in a Square Enclosure with an Isolated Heat-Generating Innerboby (고립된 발열물체를 가지는 정사각형 밀폐공간 내에서의 자연대류 열전달 및 유동 특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.360-367
    • /
    • 1984
  • 본 연구에서는 F=1/4때 및 F=4일때 각각 Fx 및 Fy가 변하는 율을 동일하게 선택하였다. 따라서 F=1/4때의 Fx값은 중력의 방향을 90˚회전 시킬때의 경우인 F=4 일 때의 Fy값과 동일하여진다.