• Title/Summary/Keyword: 정보 탐색

Search Result 6,128, Processing Time 0.033 seconds

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.

A Study on Market Expansion Strategy via Two-Stage Customer Pre-segmentation Based on Customer Innovativeness and Value Orientation (고객혁신성과 가치지향성 기반의 2단계 사전 고객세분화를 통한 시장 확산 전략)

  • Heo, Tae-Young;Yoo, Young-Sang;Kim, Young-Myoung
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.1
    • /
    • pp.73-97
    • /
    • 2007
  • R&D into future technologies should be conducted in conjunction with technological innovation strategies that are linked to corporate survival within a framework of information and knowledge-based competitiveness. As such, future technology strategies should be ensured through open R&D organizations. The development of future technologies should not be conducted simply on the basis of future forecasts, but should take into account customer needs in advance and reflect them in the development of the future technologies or services. This research aims to select as segmentation variables the customers' attitude towards accepting future telecommunication technologies and their value orientation in their everyday life, as these factors wilt have the greatest effect on the demand for future telecommunication services and thus segment the future telecom service market. Likewise, such research seeks to segment the market from the stage of technology R&D activities and employ the results to formulate technology development strategies. Based on the customer attitude towards accepting new technologies, two groups were induced, and a hierarchical customer segmentation model was provided to conduct secondary segmentation of the two groups on the basis of their respective customer value orientation. A survey was conducted in June 2006 on 800 consumers aged 15 to 69, residing in Seoul and five other major South Korean cities, through one-on-one interviews. The samples were divided into two sub-groups according to their level of acceptance of new technology; a sub-group demonstrating a high level of technology acceptance (39.4%) and another sub-group with a comparatively lower level of technology acceptance (60.6%). These two sub-groups were further divided each into 5 smaller sub-groups (10 total smaller sub-groups) through two rounds of segmentation. The ten sub-groups were then analyzed in their detailed characteristics, including general demographic characteristics, usage patterns in existing telecom services such as mobile service, broadband internet and wireless internet and the status of ownership of a computing or information device and the desire or intention to purchase one. Through these steps, we were able to statistically prove that each of these 10 sub-groups responded to telecom services as independent markets. We found that each segmented group responds as an independent individual market. Through correspondence analysis, the target segmentation groups were positioned in such a way as to facilitate the entry of future telecommunication services into the market, as well as their diffusion and transferability.

  • PDF

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

An Exploratory Study on the Competition Patterns Between Internet Sites in Korea (한국 인터넷사이트들의 산업별 경쟁유형에 대한 탐색적 연구)

  • Park, Yoonseo;Kim, Yongsik
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.79-111
    • /
    • 2011
  • Digital economy has grown rapidly so that the new business area called 'Internet business' has been dramatically extended as time goes on. However, in the case of Internet business, market shares of individual companies seem to fluctuate very extremely. Thus marketing managers who operate the Internet sites have seriously observed the competition structure of the Internet business market and carefully analyzed the competitors' behavior in order to achieve their own business goals in the market. The newly created Internet business might differ from the offline ones in management styles, because it has totally different business circumstances when compared with the existing offline businesses. Thus, there should be a lot of researches for finding the solutions about what the features of Internet business are and how the management style of those Internet business companies should be changed. Most marketing literatures related to the Internet business have focused on individual business markets. Specifically, many researchers have studied the Internet portal sites and the Internet shopping mall sites, which are the most general forms of Internet business. On the other hand, this study focuses on the entire Internet business industry to understand the competitive circumstance of online market. This approach makes it possible not only to have a broader view to comprehend overall e-business industry, but also to understand the differences in competition structures among Internet business markets. We used time-series data of Internet connection rates by consumers as the basic data to figure out the competition patterns in the Internet business markets. Specifically, the data for this research was obtained from one of Internet ranking sites, 'Fian'. The Internet business ranking data is obtained based on web surfing record of some pre-selected sample group where the possibility of double-count for page-views is controlled by method of same IP check. The ranking site offers several data which are very useful for comparison and analysis of competitive sites. The Fian site divides the Internet business areas into 34 area and offers market shares of big 5 sites which are on high rank in each category daily. We collected the daily market share data about Internet sites on each area from April 22, 2008 to August 5, 2008, where some errors of data was found and 30 business area data were finally used for our research after the data purification. This study performed several empirical analyses in focusing on market shares of each site to understand the competition among sites in Internet business of Korea. We tried to perform more statistically precise analysis for looking into business fields with similar competitive structures by applying the cluster analysis to the data. The research results are as follows. First, the leading sites in each area were classified into three groups based on averages and standard deviations of daily market shares. The first group includes the sites with the lowest market shares, which give more increased convenience to consumers by offering the Internet sites as complimentary services for existing offline services. The second group includes sites with medium level of market shares, where the site users are limited to specific small group. The third group includes sites with the highest market shares, which usually require online registration in advance and have difficulty in switching to another site. Second, we analyzed the second place sites in each business area because it may help us understand the competitive power of the strongest competitor against the leading site. The second place sites in each business area were classified into four groups based on averages and standard deviations of daily market shares. The four groups are the sites showing consistent inferiority compared to the leading sites, the sites with relatively high volatility and medium level of shares, the sites with relatively low volatility and medium level of shares, the sites with relatively low volatility and high level of shares whose gaps are not big compared to the leading sites. Except 'web agency' area, these second place sites show relatively stable shares below 0.1 point of standard deviation. Third, we also classified the types of relative strength between leading sites and the second place sites by applying the cluster analysis to the gap values of market shares between two sites. They were also classified into four groups, the sites with the relatively lowest gaps even though the values of standard deviation are various, the sites with under the average level of gaps, the sites with over the average level of gaps, the sites with the relatively higher gaps and lower volatility. Then we also found that while the areas with relatively bigger gap values usually have smaller standard deviation values, the areas with very small differences between the first and the second sites have a wider range of standard deviation values. The practical and theoretical implications of this study are as follows. First, the result of this study might provide the current market participants with the useful information to understand the competitive circumstance of the market and build the effective new business strategy for the market success. Also it might be useful to help new potential companies find a new business area and set up successful competitive strategies. Second, it might help Internet marketing researchers take a macro view of the overall Internet market so that make possible to begin the new studies on overall Internet market beyond individual Internet market studies.

  • PDF

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF

Home Economics teachers' concern on creativity and personality education in Home Economics classes: Based on the concerns based adoption model(CBAM) (가정과 교사의 창의.인성 교육에 대한 관심과 실행에 대한 인식 - CBAM 모형에 기초하여-)

  • Lee, In-Sook;Park, Mi-Jeong;Chae, Jung-Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.24 no.2
    • /
    • pp.117-134
    • /
    • 2012
  • The purpose of this study was to identify the stage of concern, the level of use, and the innovation configuration of Home Economics teachers regarding creativity and personality education in Home Economics(HE) classes. The survey questionnaires were sent through mails and e-mails to middle-school HE teachers in the whole country selected by systematic sampling and convenience sampling. Questionnaires of the stages of concern and the levels of use developed by Hall(1987) were used in this study. 187 data were used for the final analysis by using SPSS/window(12.0) program. The results of the study were as following: First, for the stage of concerns of HE teachers on creativity and personality education, the information stage of concerns(85.51) was the one with the highest response rate and the next high in the following order: the management stage of concerns(81.88), the awareness stage of concerns(82.15), the refocusing stage of concerns(68.80), the collaboration stage of concerns(61.97), and the consequence stage of concerns(59.76). Second, the levels of use of HE teachers on creativity and personality education was highest with the mechanical levels(level 3; 21.4%) and the next high in the following order: the orientation levels of use(level 1; 20.9%), the refinement levels(level 5; 17.1%), the non-use levels(level 0; 15.0%), the preparation levels(level 2; 10.2%), the integration levels(level 6; 5.9%), the renewal levels(level 7; 4.8%), the routine levels(level 4; 4.8%). Third, for the innovation configuration of HE teachers on creativity and personality education, more than half of the HE teachers(56.1%) mainly focused on personality education in their HE classes; 31.0% of the HE teachers performed both creativity and personality education; a small number of teachers(6.4%) focused on creativity education; the same number of teachers(6.4%) responded that they do not focus on neither of the two. Examining the level and type of performance HE teachers applied, the average score on the performance of creativity and personality education was 3.76 out of 5.00 and the mean of creativity component was 3.59 and of personality component was 3.94, higher than standard. For the creativity education, openness/sensitivity(3.97) education was performed most and the next most in the following order: problem-solving skill(3.79), curiosity/interest(3.73), critical thinking(3.63), problem-finding skill(3.61), originality(3.57), analogy(3.47), fluency/adaptability(3.46), precision(3.46), imagination(3.37), and focus/sympathy(3.37). For the personality education, the following components were performed in order from most to least: power of execution(4.07), cooperation/consideration/just(4.06), self-management skill(4.04), civic consciousness(4.04), career development ability(4.03), environment adaptability(3.95), responsibility/ownership(3.94), decision making(3.89), trust/honesty/promise(3.88), autonomy(3.86), and global competency(3.55). Regarding what makes performing creativity and personality education difficult, most HE teachers(64.71%) chose the lack of instructional materials and 40.11% of participants chose the lack of seminar and workshop opportunity. 38.5% chose the difficulty of developing an evaluation criteria or an evaluation tool while 25.67% responded that they do not know any means of performing creativity and personality education. Regarding the better way to support for creativity and personality education, the HE teachers chose in order from most to least: 'expansion of hands-on activities for students related to education on creativity and personality'(4.34), 'development of HE classroom culture putting emphasis on creativity and personality'(4.29), 'a proper curriculum on creativity and personality education that goes along with students' developmental stages'(4.27), 'securing enough human resource and number of professors who will conduct creativity and personality education'(4.21), 'establishment of the concept and value of the education on creativity and personality'(4.09), and 'educational promotion on creativity and personality education supported by local communities and companies'(3.94).

  • PDF

Review of the Korean Indigenous Species Investigation Project (2006-2020) by the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea (한반도 자생생물 조사·발굴 연구사업 고찰(2006~2020))

  • Bae, Yeon Jae;Cho, Kijong;Min, Gi-Sik;Kim, Byung-Jik;Hyun, Jin-Oh;Lee, Jin Hwan;Lee, Hyang Burm;Yoon, Jung-Hoon;Hwang, Jeong Mi;Yum, Jin Hwa
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.119-135
    • /
    • 2021
  • Korea has stepped up efforts to investigate and catalog its flora and fauna to conserve the biodiversity of the Korean Peninsula and secure biological resources since the ratification of the Convention on Biological Diversity (CBD) in 1992 and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits (ABS) in 2010. Thus, after its establishment in 2007, the National Institute of Biological Resources (NIBR) of the Ministry of Environment of Korea initiated a project called the Korean Indigenous Species Investigation Project to investigate indigenous species on the Korean Peninsula. For 15 years since its beginning in 2006, this project has been carried out in five phases, Phase 1 from 2006-2008, Phase 2 from 2009-2011, Phase 3 from 2012-2014, Phase 4 from 2015-2017, and Phase 5 from 2018-2020. Before this project, in 2006, the number of indigenous species surveyed was 29,916. The figure was cumulatively aggregated at the end of each phase as 33,253 species for Phase 1 (2008), 38,011 species for Phase 2 (2011), 42,756 species for Phase 3 (2014), 49,027 species for Phase 4 (2017), and 54,428 species for Phase 5(2020). The number of indigenous species surveyed grew rapidly, showing an approximately 1.8-fold increase as the project progressed. These statistics showed an annual average of 2,320 newly recorded species during the project period. Among the recorded species, a total of 5,242 new species were reported in scientific publications, a great scientific achievement. During this project period, newly recorded species on the Korean Peninsula were identified using the recent taxonomic classifications as follows: 4,440 insect species (including 988 new species), 4,333 invertebrate species except for insects (including 1,492 new species), 98 vertebrate species (fish) (including nine new species), 309 plant species (including 176 vascular plant species, 133 bryophyte species, and 39 new species), 1,916 algae species (including 178 new species), 1,716 fungi and lichen species(including 309 new species), and 4,812 prokaryotic species (including 2,226 new species). The number of collected biological specimens in each phase was aggregated as follows: 247,226 for Phase 1 (2008), 207,827 for Phase 2 (2011), 287,133 for Phase 3 (2014), 244,920 for Phase 4(2017), and 144,333 for Phase 5(2020). A total of 1,131,439 specimens were obtained with an annual average of 75,429. More specifically, 281,054 insect specimens, 194,667 invertebrate specimens (except for insects), 40,100 fish specimens, 378,251 plant specimens, 140,490 algae specimens, 61,695 fungi specimens, and 35,182 prokaryotic specimens were collected. The cumulative number of researchers, which were nearly all professional taxonomists and graduate students majoring in taxonomy across the country, involved in this project was around 5,000, with an annual average of 395. The number of researchers/assistant researchers or mainly graduate students participating in Phase 1 was 597/268; 522/191 in Phase 2; 939/292 in Phase 3; 575/852 in Phase 4; and 601/1,097 in Phase 5. During this project period, 3,488 papers were published in major scientific journals. Of these, 2,320 papers were published in domestic journals and 1,168 papers were published in Science Citation Index(SCI) journals. During the project period, a total of 83.3 billion won (annual average of 5.5 billion won) or approximately US $75 million (annual average of US $5 million) was invested in investigating indigenous species and collecting specimens. This project was a large-scale research study led by the Korean government. It is considered to be a successful example of Korea's compressed development as it attracted almost all of the taxonomists in Korea and made remarkable achievements with a massive budget in a short time. The results from this project led to the National List of Species of Korea, where all species were organized by taxonomic classification. Information regarding the National List of Species of Korea is available to experts, students, and the general public (https://species.nibr.go.kr/index.do). The information, including descriptions, DNA sequences, habitats, distributions, ecological aspects, images, and multimedia, has been digitized, making contributions to scientific advancement in research fields such as phylogenetics and evolution. The species information also serves as a basis for projects aimed at species distribution and biological monitoring such as climate-sensitive biological indicator species. Moreover, the species information helps bio-industries search for useful biological resources. The most meaningful achievement of this project can be in providing support for nurturing young taxonomists like graduate students. This project has continued for the past 15 years and is still ongoing. Efforts to address issues, including species misidentification and invalid synonyms, still have to be made to enhance taxonomic research. Research needs to be conducted to investigate another 50,000 species out of the estimated 100,000 indigenous species on the Korean Peninsula.