Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.341-349
/
2006
These day, Internet Recruiting needs negotiation of recruiting items. So in this paper, Internet Recruiting Negotiation System(IRNS) proposes multilateral negotiation that substitutes applicants and employers. Previous NSS uses preference value of multi-attribute and sequential negotiation. But proposed IRNS uses parallel negotiation of multi-attribute. parallel negotiation supplies multi-attribute negotiation including single-attribute and results of parallel negotiation. This paper proposes effective negotiation using weight strategy of multi-attribute.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.30-32
/
2000
전자상거래 기술의 발전에 따라 사용자를 대신하여 협상을 수행하는 소프트웨어 에이전트의 활용에 대한 연구가 진행되고 있다. 협상 에이전트는 협상의 양측인 구매자와 판매자를 대신하는 멀티 에이전트로 쌍방향의 협상이 이루어지며, 가격을 통한 단일 속성으로 시간에 따른 협상이 연구되어 왔다. 본 논문은 단일 속성과 다중 속성에 대한 두 가지 방식의 효율적인 협상을 제공하기 위한 협상 에이전트를 제안한다. 다중 속성에 대한 협상은 지원자가 원하는 협상 요소를 결정하며, 각 속성간의 중요도에 따른 가중치를 부여한 협상 알고리즘과 자율 협상을 위해 전략을 제안한다. 인터넷을 이용한 채용이 보편화되어 지원자와 고용자의 단일 속성과 다중 속성에 대한 협상이 요구되는 시점에서, 인터넷 채용 시스템에서 지원자, 고용주를 대신하는 협상 에이전트를 적용시켰다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.235-237
/
2004
본 논문은 객체 데이터베이스 속성을 적용하여 데이터베이스 스키마를 생성하고 XML문서를 저장하는 기법을 제안한다 기존의 관계형 데이터베이스는 트리 기반의 XML 문서를 플랫한 테이블에 저장하므로 모델 불일치 문제가 발생한다. 또한, 문서를 검색할 때 고비용의 조인 연산이 필요하다. 하지만 객체 데이터베이스의 집합값 속성과 객체참조 속성은 트리 기반의 IDA 문서를 저장할 때 모델 측면에서 자연스럽다. 집합간 속성과 객체참조 속성은 Uを질의에 자주 사용되는 경로질의 및 순서를 이용하는 질의를 처리할 때게도 유리하다. 본 논문에서는 객체 데이터베이스의 집합값 속성과 객체참조 속성을 이용하여 XML 문서를 저장하기 위한 2가지의 DTD의존적 스키마 설계 기법인 i) 기본 규칙, ii) 인라인 규칙을 제시한다. 다양한 XML 문서에 대해 각각의 규칙에 따른 클래스 수, 저장 공간, 그리고 질의처리 시간을 비교 분석하였다.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.1165-1168
/
2010
본 논문에서는 Bethencourt등의 CP-ABE에서 효율적인 속성값 철회 기법에 대해 알아본다. 기존에 제안된 속성값 철회 기법은 대부분 KP-ABE에 대한 것이며, CP-ABE에서 속성값 철회는 철회를 위한 메시지 크기가 철회자에 비례해 커지고 NOT연산을 필요로 한다는 측면에서 효율적이지 못하다. 이에 대해 Bethencourt등의 CP-ABE와 기존의 속성값 철회 기법에 대해 알아본 후 Bethencourt등의 CP-ABE에서 효율적인 속성값 철회 기법에 대해 제시하고자 한다.
Proceedings of the Korea Inteligent Information System Society Conference
/
1999.10a
/
pp.391-398
/
1999
사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.
Wireless sensors play important roles in various areas as ubiquitous computing is generalized. Depending on applications properties, each sensor can be equipped with limited computing power in addition to general function of gathering environment-related information. One of main issues in this environment is to improve energy-efficiency in sensor nodes. In this paper, we devise a new attribute-query processing algorithm. Each sensor has to maintain partial information locally about attributes values gathered at its all descendent nodes. As the volume is higher, however, the maintenance cost also increases. And the update cost also has to be considered in the proposed algorithm. Thus, some bits, AVB(Attribute-Value Bits), are delivered instead of the value itself, where each bit represents a bound of attribute. Thus, the partial information can decrease the number of exchanged messages with a little cost during query processing. Through simulation works, the proposed algorithm is analyzed from several points of view.
Proceedings of the Korean Statistical Society Conference
/
2003.05a
/
pp.103-108
/
2003
데이터마이닝을 위한 대용량 데이터베이스를 축소시키는 방법 중에 속성선택 방법이 많이 사용되고 있다. 본 논문에서는 세 가지 속성선택 방법을 사용하여 조건속성 수를 60%이상 축소시켜 결정나무와 로지스틱 회귀모형에 적용시켜보고 이들의 효율을 비교해 본다. 세 가지 속성선택 방법은 MDI, 정보획득, ReliefF 방법이다. 결정나무 방법은 QUEST, CART, C4.5를 사용하였다. 속성선택 방법들의 분류 정확성은 UCI 데이터베이스에 주어진 Credit 승인 데이터베이스와 German Credit 데이터베이스를 사용하여 10층-교차확인 방법으로 평가하였다.
인터넷상에서 각종 민감한 데이터들이 공유 유통되어지는 가운데 외부공격자나 내부사용자의 관리 미흡으로 인해 데이터 유출문제가 발생되고 있다. 이를 안전하게 관리하기 암호방식으로 본 논문에서는 ID기반 암호의 확장된 개념의 속성 기반 암호방식에 대해 검토한다. 그리고 속성기반 프록시 재암호화 방식도 함께 검토 하였다.
Journal of The Korean Association For Science Education
/
v.29
no.8
/
pp.812-823
/
2009
The purpose of this study is to search effective assessments methods by using the Fusion model of Cognitive diagnosis theory. Attributes are skills or cognitive processes that are required to perform correctly on a particular item. After test items were developed, item's attributes were decided and Q-matrix about item's attributes was made. After testing, the result was analyzed according to gender and achievement level. The results of the analysis showed that students mastered 'Interpreting data' best, and 'synthesizing' worst among the five attributes. Female students showed higher ability than male students in 'recalling.' Students of high achievement level mastered more scientific attributes than students of low achievement level. Conventional assessments only provided a single summary score but Cognitive diagnosis modeling provided useful information by estimating individual knowledge states by assessing whether an examinee has mastered specific attributes measured by the science test. The skill profiles can offer a skill level of strong, weak, or mixed for each student for each skill. Therefore, the skill profiles will provide useful diagnostic information in addition to single overall scores.
In relational database management systems(RDBMS), a table consIn relational database management systems(RDBMS), a table consists of sets of records which are composed of a set of attributes. The number of distinct values(NDV) of an attribute denotes the number of distinct attribute values that actually appear in the database records, and is widely used in optimizing queries and supporting statistic queries. Object-relational database management systems(ORBBMSS), however, support the inheritance between tables which enforces an attribute defined in a super-table to be inherited in sub-tables automatically. Hence, in ORDBMSS, not only NDV of an attribute In a single table but also NDV of an attribute in multiple tables(HNDV) is needed. In this paper, we propose a method that calculates HNDV using arrays of attribute value intervals. In this method, an array of attribute value intervals is created for an attribute of interest In each table in a table hierarchy, and HNDV can be calculated or estimated by merging the arrays of attribute value intervals. The proposed method accurately calculates HNDV using small additional storage space and is efficient for an environment where only some of the tables in a table hierarchy are frequently updated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.