• Title/Summary/Keyword: 정보 모델

Search Result 23,596, Processing Time 0.051 seconds

Foreigner Tourists Acceptance of Surtitle Information Service: Focusing on Transformed TAM and Effects of Perceived Risks (외국 관광객의 공연자막 서비스 수용에 관한 연구 - 변형된 기술수용모형과 인지된 위험의 효과 검증을 중심으로 -)

  • Kim, Seoung Gon;Heo, Shik
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.213-241
    • /
    • 2019
  • Recently, many interests in the economic contribution of performing arts for the city's tourist attractions have been increasing, and the policy projects supporting surtitle for foreign tourists are expanding. Therefore, the purpose of this study is to explore the acceptance process of subtitle systems using the TAM(Technical Acceptance Model) to understand the influential relations of factors affecting the viewing of the performance of subtitling service by foreign tourists. Data for empirical analysis were collected in a survey of foreign tourists who had experienced performance subtitles with smart pads in three languages. The results of this study are as follows. First, the higher the information system quality of the performance subtitles, the higher the perceived usefulness of the subtitles. Second, for Korean performances, the decreasing level of both the performance-based risk and the psychological risk has a positive influence on the viewing intent. But, the decreasing level of the financial risk has a negative influence on the viewing intent. Third, the decreasing level of performance risk has a positive influence on the perceived usefulness, while the decreasing level of psychological risk has a negative influence on the perceived usefulness. Finally, the psychological risk has the moderating effect of the viewing intention, which it has a negative influence on the perceived usefulness.

Optimization of Uneven Margin SVM to Solve Class Imbalance in Bankruptcy Prediction (비대칭 마진 SVM 최적화 모델을 이용한 기업부실 예측모형의 범주 불균형 문제 해결)

  • Sung Yim Jo;Myoung Jong Kim
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.23-40
    • /
    • 2022
  • Although Support Vector Machine(SVM) has been used in various fields such as bankruptcy prediction model, the hyperplane learned by SVM in class imbalance problem can be severely skewed toward minority class and has a negative impact on performance because the area of majority class is expanded while the area of minority class is invaded. This study proposed optimized uneven margin SVM(OPT-UMSVM) combining threshold moving or post scaling method with UMSVM to cope with the limitation of the traditional even margin SVM(EMSVM) in class imbalance problem. OPT-UMSVM readjusted the skewed hyperplane to the majority class and had better generation ability than EMSVM improving the sensitivity of minority class and calculating the optimized performance. To validate OPT-UMSVM, 10-fold cross validations were performed on five sub-datasets with different imbalance ratio values. Empirical results showed two main findings. First, UMSVM had a weak effect on improving the performance of EMSVM in balanced datasets, but it greatly outperformed EMSVM in severely imbalanced datasets. Second, compared to EMSVM and conventional UMSVM, OPT-UMSVM had better performance in both balanced and imbalanced datasets and showed a significant difference performance especially in severely imbalanced datasets.

The Effect of Smart Oreder Service on Satisfaction and Continuous Use Intention: The Moderating Effect of Personality Type (스마트 오더 서비스가 만족도와 지속사용의도에 미치는 영향: 성격유형의 조절효과)

  • Yea Ji Yeon;Cheol Park
    • Information Systems Review
    • /
    • v.24 no.2
    • /
    • pp.41-66
    • /
    • 2022
  • With the development of IT, mobile apps and the expansion of contactless services due to COVID-19, "smart orders" have recently been activated in the food and beverage service. Even in recent years, when sales have declined, the number of orders made by smart orders has been steadily increasing, and this ordering method can accumulate customer data, enabling effective customized services in the future. In the present study, satisfaction with smart orders and continuous use intention were studied based on the technology acceptance model (TAM). And it focused on whether there is a difference in personality when using smart orders. For this purpose, a survey was conducted on 317 smart order users, and the hypothesis was verified by structural equation model analysis. Perceived benefits had a significant effect on satisfaction; also, satisfaction had a significant effect on continuous use intention. There is a significant disparity between introvert and extrovert type. As a consequence, the introverted type has a greater intention to perceive usefulness of smart orders and continuously use them. These results suggest that the customer's personality type should be considered in future customer customization strategies.

Development of a UAV-Based Urban Thermal Comfort Assessment Method (UAV 기반 도시 공간의 열 쾌적성 평가기법 개발)

  • Seounghyeon Kim;Bonggeun Song;Kyunghun Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.61-77
    • /
    • 2024
  • The purpose of this study was to develop a method for rapidly diagnosing urban thermal comfort using Unmanned Aerial Vehicle (UAV) based data. The research was conducted at Changwon National University's College of Engineering site and Yongji Park, both located in Changwon, Gyeongsangnam-do. Baseline data were collected using field measurements and UAVs. Specifically, the study calculated field measurement-based thermal comfort indices PET and UTCI, and used UAVs to create and analyze vegetation index (NDVI), sky view factor (SVF), and land surface temperature (LST) images. The results showed that UAV-predicted PET and UTCI had high correlations of 0.662 and 0.721, respectively, within a 1% significance level. The explanatory power of the prediction model was 43.8% for PET and 52.6% for UTCI, with RMSE values of 6.32℃ for PET and 3.16℃ for UTCI, indicating that UTCI is more suitable for UAV-based thermal comfort evaluation. The developed method offers significant time-saving advantages over traditional approaches and can be utilized for real-time urban thermal comfort assessment and mitigation planning

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

Robust Speech Recognition Algorithm of Voice Activated Powered Wheelchair for Severely Disabled Person (중증 장애우용 음성구동 휠체어를 위한 강인한 음성인식 알고리즘)

  • Suk, Soo-Young;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.250-258
    • /
    • 2007
  • Current speech recognition technology s achieved high performance with the development of hardware devices, however it is insufficient for some applications where high reliability is required, such as voice control of powered wheelchairs for disabled persons. For the system which aims to operate powered wheelchairs safely by voice in real environment, we need to consider that non-voice commands such as user s coughing, breathing, and spark-like mechanical noise should be rejected and the wheelchair system need to recognize the speech commands affected by disability, which contains specific pronunciation speed and frequency. In this paper, we propose non-voice rejection method to perform voice/non-voice classification using both YIN based fundamental frequency(F0) extraction and reliability in preprocessing. We adopted a multi-template dictionary and acoustic modeling based speaker adaptation to cope with the pronunciation variation of inarticulately uttered speech. From the recognition tests conducted with the data collected in real environment, proposed YIN based fundamental extraction showed recall-precision rate of 95.1% better than that of 62% by cepstrum based method. Recognition test by a new system applied with multi-template dictionary and MAP adaptation also showed much higher accuracy of 99.5% than that of 78.6% by baseline system.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data (EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구)

  • Ha-Je Park;Hee-Young Yang;So-Jin Choi;Dae-Yeon Kim;Choon-Sung Nam
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.57-67
    • /
    • 2024
  • This paper explores the potential of electromyography (EMG) as a means of gesture recognition for user input in gesture-based interaction. EMG utilizes small electrodes within muscles to detect and interpret user movements, presenting a viable input method. To classify user gestures based on EMG data, machine learning techniques are employed, necessitating the preprocessing of raw EMG data to extract relevant features. EMG characteristics can be expressed through formulas such as Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (VAR), and Root Mean Square (RMS). Additionally, determining the suitable time for gesture classification is crucial, considering the perceptual, cognitive, and response times required for user input. To address this, segment sizes ranging from a minimum of 100ms to a maximum of 1,000ms are varied, and feature extraction is performed to identify the optimal segment size for gesture classification. Notably, data learning employs overlapped segmentation to reduce the interval between data points, thereby increasing the quantity of training data. Using this approach, the paper employs four machine learning models (KNN, SVC, RF, XGBoost) to train and evaluate the system, achieving accuracy rates exceeding 96% for all models in real-time gesture input scenarios with a maximum segment size of 200ms.

An Empirical Investigation into the Effect of the Factors on the Innovation Performance of FinTech Firms (핀테크 기업의 혁신성과에 영향을 미치는 요인에 관한 실증연구)

  • Bo Seong Yun;Yong Jin Kim
    • Information Systems Review
    • /
    • v.22 no.3
    • /
    • pp.59-80
    • /
    • 2020
  • Excellent FinTech firms create value by finding customer needs or addressing customer problems to provide customers with differentiated solutions through information technologies and organizational innovation capability. Accordingly, the survival and growth of FinTech firms rely on the innovation performance for solving customer problems. This study assumes that IT relatedness and entrepreneurial culture play a mediating role in the relationship between service orientation and innovation performance. To examine it, designed and demonstrated is a structural model from the perspective of dynamic organizational capability. The results show that IT relatedness and entrepreneurial culture play a mediating role between service orientation and innovation performance. Although IT relatedness and entrepreneurial culture were partial mediators in each divided model, the integration model showed there was no direct effect of service orientation on innovation performance. The practical implication is that FinTech companies need to understand customer problems accurately, set up appropriate service goals and align all strategies to achieve them. With these strategic alignments, higher innovation performance can be achieved by enabling IT resources and capabilities to be actively utilized in all functions of the organization and institutionalizing the entrepreneurial culture.

New Hybrid Approach of CNN and RNN based on Encoder and Decoder (인코더와 디코더에 기반한 합성곱 신경망과 순환 신경망의 새로운 하이브리드 접근법)

  • Jongwoo Woo;Gunwoo Kim;Keunho Choi
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.129-143
    • /
    • 2023
  • In the era of big data, the field of artificial intelligence is showing remarkable growth, and in particular, the image classification learning methods by deep learning are becoming an important area. Various studies have been actively conducted to further improve the performance of CNNs, which have been widely used in image classification, among which a representative method is the Convolutional Recurrent Neural Network (CRNN) algorithm. The CRNN algorithm consists of a combination of CNN for image classification and RNNs for recognizing time series elements. However, since the inputs used in the RNN area of CRNN are the flatten values extracted by applying the convolution and pooling technique to the image, pixel values in the same phase in the image appear in different order. And this makes it difficult to properly learn the sequence of arrangements in the image intended by the RNN. Therefore, this study aims to improve image classification performance by proposing a novel hybrid method of CNN and RNN applying the concepts of encoder and decoder. In this study, the effectiveness of the new hybrid method was verified through various experiments. This study has academic implications in that it broadens the applicability of encoder and decoder concepts, and the proposed method has advantages in terms of model learning time and infrastructure construction costs as it does not significantly increase complexity compared to conventional hybrid methods. In addition, this study has practical implications in that it presents the possibility of improving the quality of services provided in various fields that require accurate image classification.