• 제목/요약/키워드: 정보 모델

검색결과 23,596건 처리시간 0.056초

메타분석을 통한 뇌졸중 환자의 인지기능에 대한 가상현실 중재 효과 연구 (A Study on the Effect of Virtual Reality Intervention on Cognitive Function in Individuals With Stroke Through Meta-analysis)

  • 권재성
    • 재활치료과학
    • /
    • 제10권3호
    • /
    • pp.7-22
    • /
    • 2021
  • 목적 : 본 연구에서는 뇌졸중 환자의 손상된 인지기능 회복을 위한 가상현실 중재의 효과를 체계적인 문헌고찰과 메타분석을 통하여 검증하고자 하였다. 연구방법 : 체계적 문헌고찰을 위하여 최근 10년 동안의 국내·외 무작위 대조 임상시험 연구들을 대상으로 조사하였다. 검색을 위한 학술 데이터베이스로는, 영어로 작성된 연구의 검색을 위해 PubMed와 MEDLINE, CINAHL을 사용하였고, 국문으로 작성된 연구의 검색을 위해서는 DBpia와 한국학술정보, 스콜라 학지사·교보문고, 학술교육원을 사용하였다. 정보의 추출은 PICO 방식으로 시행하였다. 계량적 메타분석을 위하여, 결과변인의 하위그룹을 전반적인 인지기능, 집중력과 기억력, 실행기능으로 분류하여 결과변인을 합성하였다. 결과 : 최종 9편의 무작위 대조 임상시험이 선정되었고, 참여대상자의 총인원은 실험군이 140명, 대조군이 131명이었다. 효과크기는 랜덤효과모델로 산출하였다. 하위그룹들에 대한 가상현실 중재의 효과크기는 전반적인 인지기능이 0.422(95% CI: 0.101~0.742; p=0.010)로 중간효과크기에 가까웠고, 집중력과 기억력이 0.249(95% CI: -0.107~0.605; p=0.170)로 작은효과크기, 실행기능은 0.666(95% CI: 0.136~1.195; p=0.014)으로 중간효과크기를 나타내었다. 결론 : 가상현실 환경의 다양한 자극과 본 연구의 결과를 고려할 때, 가상현실 중재는 통합적인 인지기능에 대한 중재에 적용되어야 할 것이다. 또한 전통적인 뇌졸중 인지재활 중재와 더불어 추가적인 중재로 활용되는 것이 적절할 것이다.

객실승무원의 심리적임파워먼트가 CSM기반과 CSM초월 서비스행동에 미치는 영향 (The Effect of Flight Attendant's Psychological Empowerment on the Service Behavior 'by and beyond' CSM)

  • 이수경
    • 한국산업정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.97-118
    • /
    • 2021
  • 본 연구의 목적은 항공사 객실승무원의 심리적임파워먼트가 고객중심 업무수행자세와 CSM(Cabin Service Manual)기반 서비스행동, CSM초월 서비스행동에 미치는 영향을 알아보는 것이다. 연구모형과 관련 가설은 구조방정식 모델로 검증되었다. 연구 결과에 따르면, 심리적임파워먼트는 고객중심 업무수행자세와 객실승무원의 CSM기반 서비스행동에 유의한 영향을 미치고, CSM초월 서비스행동에는 영향을 미치지 않음이 확인되었다. 그리고, 고객중심 업무수행자세는 CSM기반 서비스행동에 유의한 영향을 미치나 CSM초월 서비스행동에는 유의한 영향을 미치지 않는 것으로 나타났다. 또한, 고객중심 업무수행자세는 심리적임파워먼트와 CSM기반 서비스행동 간에 매개효과를 나타냈다. 반면, 심리적임파워먼트와 CSM초월 서비스행동 간에는 매개효과가 없는 것으로 분석되었다. 본 연구는 객실서비스품질 향상을 위해서 고객 접점에 있는 객실승무원의 심리적임파워먼트와 고객중심 업무수행자세의 중요성을 확인하고, 심리적임파워먼트는 고객중심 업무수행자세가 전제될 때 CSM기반 서비스행동을 강화한다는 것을 실증하였다.

화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법 (Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars)

  • 김재인
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1015-1023
    • /
    • 2022
  • 착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.

Counting and Localizing Occupants using IR-UWB Radar and Machine Learning

  • Ji, Geonwoo;Lee, Changwon;Yun, Jaeseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.1-9
    • /
    • 2022
  • 사람이나 사물 등의 위치를 알아낼 수 있는 측위기술은 사람의 유동량 측정, 보안, 인원 구조 등 다양한 환경에서 요구되고 사용될 수 있다. 측위를 위해 카메라와 같은 시각 센서기술을 사용하기도 하지만 이는 빛, 온도 등 주변 환경에 민감하며 사생활 노출 문제가 발생할 수 있다. 본 논문에서는 앞서 말한 문제들이 없는 초광대역 (UWB, ultra wideband) 레이더 기술과 머신러닝을 이용하여 벽 뒤 다른 실내공간에 있는 점유자의 수와 위치를 인식하는 연구를 수행하였다. 네 가지 상황 (강의실 내 몇 명이 있는지, 28가지의 위치를 정하고 어느 위치에 있는지, 28가지의 위치 중 한 위치에서 더 세부적인 16가지 위치 중 어느 위치에 있는지, 두 명이 동시에 있는 상황에서 어느 위치에 있는지)에 대해 극단적 랜덤 트리 등 네 가지 알고리즘 별로 모델을 생성하고 그 결과를 비교하였다. 전체적으로 네 가지 알고리즘 모두 좋은 결과를 보여주었으며 머신러닝을 이용해 위치인식 및 위치측정이 가능함을 검증하였다. 또한 oneM2M 표준 플랫폼을 활용하여 서비스 확장 가능성을 고려하였으며 이 기술을 여러 분야에서 활용한다면 더욱 많은 서비스나 제품을 창출할 수 있을 것으로 기대한다.

배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용 (Application of deep learning technique for battery lead tab welding error detection)

  • 김윤호;김병만
    • 한국산업정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.71-82
    • /
    • 2022
  • 자동차용 배터리 제조공정 가운데 하나인 Tab Welding 공정에서 생산된 제품의 샘플링 인장검사를 대체하기 위해 현재 비전검사기를 개발하여 사용하고 있다. 그러나, 비전검사는 검사 위치 오차 문제와 이를 개선하기 위해 발생하는 비용 문제를 가지고 있다. 이러한 문제점들을 해결하기 위해 최근 딥러닝 기술을 적용하는 사례들이 발생하고 있다. 본 논문도 그런 사례 중 하나로 기존 제품 검사에 딥러닝 기술 중 하나인 Faster R-CNN을 적용하여 그 유용성을 파악하고자 하였다. 기존 비전검사기를 통해 획득한 이미지들을 학습 데이터로 사용하여 Faster R-CNN ResNet101 V1 1024x1024 모델을 사용하여 학습하였다. 검사 기준인 미검률 0%, 과검률 10%의 기준으로 기존 비전검사와 Faster R-CNN 검사결과를 비교 분석하였다. 미검출률은 기존 비전검사에서 34.5%, Faster R-CNN 검사에서 0%였다. 과검출률은 기존 비전검사에서 100%, Faster R-CNN에서 6.9%였다. 결론적으로 자동차용 배터리 리드탭 암흔 오류 검출에 딥러닝 기술이 매우 유용함을 확인할 수 있었다.

네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법 (Deep Learning Based Group Synchronization for Networked Immersive Interactions)

  • 이중재
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.373-380
    • /
    • 2022
  • 본 논문에서는 네트워크 환경에서 원격사용자들의 몰입형 상호작용을 위한 딥러닝 기반의 그룹 동기화 기법을 제안한다. 그룹 동기화의 목적은 사용자의 몰입감을 높이기 위해서 모든 참여자가 동시에 상호작용이 가능하게 하는 것이다. 기존 방법은 시간 정확도를 향상을 위해 대부분 NTP(Network Time Protocol) 기반의 시간 동기화 방식에 초점이 맞추어져 있다. 동기화 서버에서는 미디어 재생 시간을 제어하기 위해 이동 평균 필터를 사용한다. 그 한 예로서, 지수 가중평균 방법은 입력 데이터의 변화가 크지 않으면 정확하게 재생 시간을 추종하고 예측하나 네트워크, 코덱, 시스템 상태의 급격한 변화가 있을 때는 안정화를 위해 더 많이 시간이 필요하다. 이런 문제점을 개선하기 위해서 데이터의 특성을 반영할 수 있는 딥러닝 기반의 그룹 동기화 기법인 DeepGroupSync를 제안한다. 제안한 딥러닝 모델은 시계열의 재생 지연 시간을 이용하여 최적의 재생 시간을 예측하는 두 개의 GRU(gated recurrent unit) 계층과 하나의 완전 연결 계층으로 구성된다. 실험에서는 기존의 지수 가중평균 기반 방법과 제안한 DeepGroupSync 방법에 대한 성능을 평가한다. 실험 결과로부터 예상하지 못한 급격한 네트워크 조건 변화에 대해서 제안한 방법이 기존 방법보다 더 강건함을 볼 수 있다.

헬스케어 특허의 IPC 코드 기반 사회 연결망 분석(SNA)을 이용한 기술 융복합 분석 (Technology Convergence Analysis by IPC Code-Based Social Network Analysis of Healthcare Patents)

  • 심재륜
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.308-314
    • /
    • 2022
  • 본 연구는 국내에 출원된 헬스케어 특허의 기술 융복합 분석에 관한 것으로 사회 연결망 분석(Social Network Analysis)을 이용하여 핵심 기술간 관계를 시각화하였다. 헬스케어 특허의 서브클래스 수준에서 복합 IPC 코드를 가지는 특허는 1,155건(49.4%)으로 조사되었고, 이를 대상으로 사회 연결망 분석을 실시한 결과 연결 중심성이 가장 큰 IPC 코드는 A61B, G16H, G06Q 순이고, 매개 중심성이 가장 큰 IPC 코드는 A61B, G16H, G06Q 순이다. 또한 헬스케어 특허는 두 개의 큰 기술 집합(Cluster)으로 구성되어 있다는 것을 확인할 수 있었다. Cluster-1은 A61B와 G16H 및 G06Q를 중심으로 헬스케어 인포매틱스 관련 기술을 이용한 진단, 수술 등 관련 비즈니스 모델에 해당하고, Cluster-2는 H04L과 H04W 및 H04B로 구성된 디지털 통신 기반의 헬스케어 사물인터넷 기술이다. 헬스케어 특허의 기술 융복합 핵심 쌍은 Cluster-1에서 [G16H-A61B]와 [G16H-G06Q] 이고, Cluster-2에서는 [H04L-H04W] 이다. 본 연구는 헬스케어 특허의 기술 개발 동향과 앞으로의 특허 출원에 기여할 수 있다.

배 화상병 종합적 방제를 위한 Maryblyt 활용 방안 연구 (A Maryblyt Study to Apply Integrated Control of Fire Blight of Pears in Korea)

  • 남궁경봉;윤성철
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.305-317
    • /
    • 2022
  • 배 화상병의 성공적 방제를 위해 2018년부터 2022년까지 우리나라 중부지방의 주요 발병지와 남부지방의 미발병 주산지 주요지점 25곳에 대한 Maryblyt를 구동하여 꽃감염 위험도를 조사하였다. 최근 5년 중 2019년과 2022년 개화기간 중 꽃감염 위험도가 가장 높았다. 한편, 개화기간 중 최적의 꽃감염 방제 처리는 High 경보 다음날에 방제하고, 강우예보를 발령한 전날 방제하는 처리가 배 꽃감염을 낮추는 것으로 평가하였다. 월동 궤양으로부터 활성화된 궤양이 병징을 보일 것으로 Maryblyt가 예측한 날은 대략 중부지방 기준 5월 중순이었는데 이때부터 현장에서 궤양 모니터링을 개시하도록 권장하였다. 천안, 이천, 상주, 나주 등 4곳의 배 과수원에 설치한 영상자료로부터 배 개화기간을 이론적으로 계산한 값과 실제 관측한 값의 차이점을 비교한 결과 남부지방은 이론치나 실측치보다 늘 빠르게 개화를 예측하므로 재조정이 필요하였다. 향후 현장 관리자와 농민들로부터 과원에서 관측한 기상, 기주인 과수, 병징 출현일 등의 정보들이 축적된다면 발병 예측 모델은 현재보다 더 정확한 정보를 제공할 수 있을 것으로 기대된다.

산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증 (Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation)

  • 민성현;윤석희;원명수;천정화;장근창
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.244-255
    • /
    • 2022
  • 본 연구는 국내의 ASOS 및 AWS와 AMOS 관측 값을 사용하여 1km 고해상도의 산악기상 격자 값을 추정하고 평가하였다. 해발고도 200m이상을 산악지역으로 정의하고 ASOS, AWS, AMOS 기상관측소를 산악기상이 반영된 기상데이터와 산악기상이 반영되지 않는 기상데이터로 나누었다. 2013년에서 2020년까지 산악기상 데이터를 적용하고 편의보정기법(bias correction method)방법을 통하여 산악기상 적용에 따른 보정계수를 산출하고 적용하여 보정계수 및 산악기상 데이터가 반영된 고해상도 산악기상기온 격자 데이터를 생성하였다. 추정된 산악기상기온 격자데이터는 검증지점의 기상 기온 실측 값과 비교하여 평가하였다. 산악기상 데이터 반영 및 보정계수가 반영된 산악기상 고해상도 격자 기온은 산악기상이 반영되지 않는 격자기온보다 RMSE가 34%(평균기온), 50%(최저기온), 31%(최고기온)가 감소하였다. 이는 산악기상 정보기반과 산악기상 보정계수를 적용이 국내 산악기상고해상도 격자 생성에 있어서 정확도를 크게 개선시킬 수 있음을 시사하였다. 이러한 1km 고해상도의 기온 격자데이터는 추후 기후변화에 대한 산림생태계 변화 및 산림재해 모델의 검증을 위한 데이터로 매우 유용하게 활용될 수 있을 것이라 사료된다.

그래프 데이터베이스 모델을 이용한 효율적인 부동산 빅데이터 관리 방안에 관한 연구 (A Study on Effective Real Estate Big Data Management Method Using Graph Database Model)

  • 김주영;김현정;유기윤
    • 한국지리정보학회지
    • /
    • 제25권4호
    • /
    • pp.163-180
    • /
    • 2022
  • 부동산 데이터는 경제, 법률, 군중심리 등 다양한 분야와 상호작용하고 복잡한 레이어의 데이터로 구성되어 있으며, 그 양 또한 방대하고 빠르게 변화하여 빅데이터로 볼 수 있다. 부동산 빅데이터를 관리하기 위한 기존의 관계형데이터베이스는 스키마가 고정되어 있고 수직적 확장성을 가지며 다양한 관계를 처리하기 어려운 한계가 있다. 이러한 한계를 극복하기 위하여 본 연구에서는 부동산 데이터를 그래프데이터베이스에 구축함으로써 그 유용성을 검증하였다. 연구방법은 가장 널리 사용되는 데이터베이스 중 하나인 관계형데이터베이스 방식인 MySQL과 그래프데이터베이스 방식인 Neo4j에 다양한 부동산 데이터를 모델링하고 실생활에서 사용되는 부동산 질문들을 수집하여 9개의 질문들에 대해 그래프데이터베이스와 관계형데이터베이스의 쿼리시간을 비교하였다. 실험결과로 Neo4j는 다양한 관계를 추론하는 다중 JOIN 문이 있는 쿼리에도 일정한 성능을 보였지만 MySQL은 JOIN문이 많아질수록 쿼리시간이 급격하게 증가하는 경향을 보였다. 이러한 결과를 통해 다양한 관계를 가진 부동산 빅데이터에 Neo4j 같은 그래프데이터베이스가 효율적일 수 있음을 알 수 있으며 부동산가격 요인예측, 부동산에 대한 AI스피커 질의 등의 분야에서 활용을 기대할 수 있다.