• Title/Summary/Keyword: 정보처리(S

Search Result 8,950, Processing Time 0.041 seconds

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

A Variable Latency Goldschmidt's Floating Point Number Square Root Computation (가변 시간 골드스미트 부동소수점 제곱근 계산기)

  • Kim, Sung-Gi;Song, Hong-Bok;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.188-198
    • /
    • 2005
  • The Goldschmidt iterative algorithm for finding a floating point square root calculated it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's square root algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the square root of a floating point number F, the algorithm repeats the following operations: $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$with the initial value is $'\;X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t\;'$. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than $'e_r=2^{-p}'$. The value of p is 28 for the single precision floating point, and 58 for the doubel precision floating point. Let $'X_i=1{\pm}e_i'$, there is $'\;X_{i+1}=1-e_{i+1},\;where\;'\;e_{i+1}<\frac{3e^2_i}{4}{\mp}\frac{e^3_i}{4}+4e_{r}'$. If '|X_i-1|<2^{\frac{-p+2}{2}}\;'$ is true, $'\;e_{i+1}<8e_r\;'$ is less than the smallest number which is representable by floating point number. So, $\sqrt{F}$ is approximate to $'\;\frac{Y_{i+1}}{T}\;'$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal square root tables ($T=\frac{1}{\sqrt{F}}+e_i$) with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a square root unit. Also, it can be used to construct optimized approximate reciprocal square root tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc.

A Variable Latency Goldschmidt's Floating Point Number Divider (가변 시간 골드스미트 부동소수점 나눗셈기)

  • Kim Sung-Gi;Song Hong-Bok;Cho Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.380-389
    • /
    • 2005
  • The Goldschmidt iterative algorithm for a floating point divide calculates it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's divide algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To calculate a floating point divide '$\frac{N}{F}$', multifly '$T=\frac{1}{F}+e_t$' to the denominator and the nominator, then it becomes ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'. And the algorithm repeats the following operations: ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than ‘$e_r=2^{-p}$'. The value of p is 29 for the single precision floating point, and 59 for the double precision floating point. Let ’$F_i=1+e_i$', there is $F_{i+1}=1-e_{i+1},\;e_{i+1}',\;where\;e_{i+1}, If '$[F_i-1]<2^{\frac{-p+3}{2}}$ is true, ’$e_{i+1}<16e_r$' is less than the smallest number which is representable by floating point number. So, ‘$N_{i+1}$ is approximate to ‘$\frac{N}{F}$'. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables ($T=\frac{1}{F}+e_t$) with varying sizes. 1'he superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

A Study on Defense and Attack Model for Cyber Command Control System based Cyber Kill Chain (사이버 킬체인 기반 사이버 지휘통제체계 방어 및 공격 모델 연구)

  • Lee, Jung-Sik;Cho, Sung-Young;Oh, Heang-Rok;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • Cyber Kill Chain is derived from Kill chain of traditional military terms. Kill chain means "a continuous and cyclical process from detection to destruction of military targets requiring destruction, or dividing it into several distinct actions." The kill chain has evolved the existing operational procedures to effectively deal with time-limited emergency targets that require immediate response due to changes in location and increased risk, such as nuclear weapons and missiles. It began with the military concept of incapacitating the attacker's intended purpose by preventing it from functioning at any one stage of the process of reaching it. Thus the basic concept of the cyber kill chain is that the attack performed by a cyber attacker consists of each stage, and the cyber attacker can achieve the attack goal only when each stage is successfully performed, and from a defense point of view, each stage is detailed. It is believed that if a response procedure is prepared and responded, the chain of attacks is broken, and the attack of the attacker can be neutralized or delayed. Also, from the point of view of an attack, if a specific response procedure is prepared at each stage, the chain of attacks can be successful and the target of the attack can be neutralized. The cyber command and control system is a system that is applied to both defense and attack, and should present defensive countermeasures and offensive countermeasures to neutralize the enemy's kill chain during defense, and each step-by-step procedure to neutralize the enemy when attacking. Therefore, thist paper proposed a cyber kill chain model from the perspective of defense and attack of the cyber command and control system, and also researched and presented the threat classification/analysis/prediction framework of the cyber command and control system from the defense aspect

A Comparative Study on Travelers' Online Travel Agency(OTA) selection attributes and revisit selection attributes (여행자의 온라인여행사(OTA) 선택속성과 재방문 시 선택속성에 관한 비교연구)

  • Yang, Chan-Yeol
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.175-193
    • /
    • 2018
  • As a new type of business model in the market competition situation of tour companies, this study has developed to the online form of the travel industry to the business form which is the combination of the electronic commerce function and the mobile service process in the provision of the simple web-site, This study explores the difficulties of change for the development of the travel industry from the point of view that recognition is not a simple marketing strategy diversification means but a change of recognition as a business model for expanding new markets or creating new markets. The factors affecting the choice of online travel agent (OTA) and the factors that influence the choice of online travel agency were analyzed. Were used for the empirical survey. The purpose of this study is to investigate the factors influencing the choice of online travel agents who have experience with or experience using online travel agency (OTA), what factors are important to them, and how they differ in importance when visiting again. The results of this study are as follows: First, there was a significant difference between the first and second visitors of online travel agencies. The results of this study were as follows: Attitude toward resolving complaints, convenience of change and cancellation, delivery of tickets and documents, convenience of complaints, The emphasis should be on establishing and strengthening service environments such as the speed of updating the latest information, the simplicity of the booking procedure, the degree of satisfaction of the past, the ability of employees to handle their work, the safety of various payment methods and settlement, The results of this study are as follows: First, the satisfaction of the online travel agency is influenced by the selection factors of the selected online tour agency, and the A/S such as the convenience of prompt delivery, Environmental factors contributed to satisfaction. It is suggested that the systematic service structure such as customer satisfaction and ease of use is a necessary marketing strategy for survival and development of online travel agencies. It is suggested that the marketing concentration strategy with the first visitors as the target market is effective and this is a part of the marketing strategy for the survival of online travel agencies.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

Ecological Health Assessments on Turbidwater in the Downstream After a Construction of Yongdam Dam (용담댐 건설후 하류부 하천 생태계의 탁수영향 평가)

  • Kim, Ja-Hyun;Seo, Jin-Won;Na, Young-Eun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.130-142
    • /
    • 2007
  • This study was to examine impacts of turbid water on fish community in the downstream of Yongdam Dam during the period from June to October 2006. For the research, we selected six sampling sites in the field: two sites were controls with no influences of turbid water from the dam and other remaining four sites were the stations for an assessment of potential turbid effects. We evaluated integrative health conditions throughout applications of various models such as necropsy-based fish health assessment model (FHA), Index of Biological Integrity (IBI) using fish assemblages, and Qualitative Habitat Evaluation Index (QHEI). Laboratory tests on fish exposure under 400 NTU were performed to find out impact of turbid water using scanning electron microscope (SEM). Results showed that fine solid particles were clogging in the gill in the treatments, while particles were not found in the control. This results indicate that when inorganic turbidity increases abruptedly, fish may have a mechanical abrasion or respiratory blocking. The stream health condition, based on the IBI values, ranged between 38 and 48 (average: 42), indicating a "excellent" or "good" condition after the criteria of US EPA (1993). In the mean time, physical habitat condition, based on the QHEI, ranged 97 to 187 (average 154), indicating a "suboptimal condition". These biological outcomes were compared with chemical dataset: IBI values were more correlated (r=0.526, p<0.05, n=18) with QHEI rather than chemical water quality, based on turbidity (r=0.260, p>0.05, n=18). Analysis of the FHA showed that the individual health indicated "excellent condition", while QHEI showed no habitat disturbances (especially bottom substrate and embeddeness), food-web, and spawning place. Consequently, we concluded that the ecological health in downstream of Yongdam Dam was not impacted by the turbid water.