• Title/Summary/Keyword: 정보처리(S

Search Result 8,950, Processing Time 0.038 seconds

A Case Study: ICT and the Region-based Sharing Economy of a Start-up Social Enterprise (ICT 기반 지역 공유경제형 사회적 기업 사례 연구)

  • Roh, Taehyup
    • Information Systems Review
    • /
    • v.18 no.1
    • /
    • pp.157-175
    • /
    • 2016
  • Under the market economy of capitalism, several limitations reveal the inequity and redistribution problem of wealth, inefficiency of over-manufacturing and over-consumption, pollution of the natural environment, and the constraint of human liberty and dignity. The new challenge of symbiotic relationships that encourage individual corporations coincides with the need to practice social responsibility and share values to overcome these limitations. Social economy and the social enterprises that simultaneously pursue the making of corporate private profits and the realization of social values have been suggested and disseminated as alternative social value creators. Furthermore, the concept of a sharing economy, which refers to the sharing of things rather than owning them, is growing traction as a new paradigm of capitalism. However, these efforts of social enterprises have fallen short against the conflicts between private profit and social values. This study deals with the case of a start-up social corporation, "Purun Bike Sharing Inc.," which is based on a regional sharing economy business model about bike rental services that use Information and Communication Technology (ICT). This corporation pursues harmonic management to achieve a balance between private profit and social value. Its corporate mission is to achieve sharing, coexistence, and contribution for public welfare. This mission is a possible idea for use in the local community network as a core key for sustainable social enterprises. The model can also be an alternative approach to overcome the structural friction in the social corporation. This study considers the case of Purun Bike Sharing as a sustainable way to practice a sharing economy business model based on a regional cooperation network, which can be combined with social value, and to apply ICT to a sharing economy system. It also examines the definition and current state of social enterprises and the sharing economy, and the cases of the sharing economy business model for the review of prior research.

A Spatio-Temporal Clustering Technique for the Moving Object Path Search (이동 객체 경로 탐색을 위한 시공간 클러스터링 기법)

  • Lee, Ki-Young;Kang, Hong-Koo;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.3 s.15
    • /
    • pp.67-81
    • /
    • 2005
  • Recently, the interest and research on the development of new application services such as the Location Based Service and Telemetics providing the emergency service, neighbor information search, and route search according to the development of the Geographic Information System have been increasing. User's search in the spatio-temporal database which is used in the field of Location Based Service or Telemetics usually fixes the current time on the time axis and queries the spatial and aspatial attributes. Thus, if the range of query on the time axis is extensive, it is difficult to efficiently deal with the search operation. For solving this problem, the snapshot, a method to summarize the location data of moving objects, was introduced. However, if the range to store data is wide, more space for storing data is required. And, the snapshot is created even for unnecessary space that is not frequently used for search. Thus, non storage space and memory are generally used in the snapshot method. Therefore, in this paper, we suggests the Hash-based Spatio-Temporal Clustering Algorithm(H-STCA) that extends the two-dimensional spatial hash algorithm used for the spatial clustering in the past to the three-dimensional spatial hash algorithm for overcoming the disadvantages of the snapshot method. And, this paper also suggests the knowledge extraction algorithm to extract the knowledge for the path search of moving objects from the past location data based on the suggested H-STCA algorithm. Moreover, as the results of the performance evaluation, the snapshot clustering method using H-STCA, in the search time, storage structure construction time, optimal path search time, related to the huge amount of moving object data demonstrated the higher performance than the spatio-temporal index methods and the original snapshot method. Especially, for the snapshot clustering method using H-STCA, the more the number of moving objects was increased, the more the performance was improved, as compared to the existing spatio-temporal index methods and the original snapshot method.

  • PDF

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

System Development for Measuring Group Engagement in the Art Center (공연장에서 다중 몰입도 측정을 위한 시스템 개발)

  • Ryu, Joon Mo;Choi, Il Young;Choi, Lee Kwon;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.45-58
    • /
    • 2014
  • The Korean Culture Contents spread out to Worldwide, because the Korean wave is sweeping in the world. The contents stand in the middle of the Korean wave that we are used it. Each country is ongoing to keep their Culture industry improve the national brand and High added value. Performing contents is important factor of arousal in the enterprise industry. To improve high arousal confidence of product and positive attitude by populace is one of important factor by advertiser. Culture contents is the same situation. If culture contents have trusted by everyone, they will give information their around to spread word-of-mouth. So, many researcher study to measure for person's arousal analysis by statistical survey, physiological response, body movement and facial expression. First, Statistical survey has a problem that it is not possible to measure each person's arousal real time and we cannot get good survey result after they watched contents. Second, physiological response should be checked with surround because experimenter sets sensors up their chair or space by each of them. Additionally it is difficult to handle provided amount of information with real time from their sensor. Third, body movement is easy to get their movement from camera but it difficult to set up experimental condition, to measure their body language and to get the meaning. Lastly, many researcher study facial expression. They measures facial expression, eye tracking and face posed. Most of previous studies about arousal and interest are mostly limited to reaction of just one person and they have problems with application multi audiences. They have a particular method, for example they need room light surround, but set limits only one person and special environment condition in the laboratory. Also, we need to measure arousal in the contents, but is difficult to define also it is not easy to collect reaction by audiences immediately. Many audience in the theater watch performance. We suggest the system to measure multi-audience's reaction with real-time during performance. We use difference image analysis method for multi-audience but it weaks a dark field. To overcome dark environment during recoding IR camera can get the photo from dark area. In addition we present Multi-Audience Engagement Index (MAEI) to calculate algorithm which sources from sound, audience' movement and eye tracking value. Algorithm calculates audience arousal from the mobile survey, sound value, audience' reaction and audience eye's tracking. It improves accuracy of Multi-Audience Engagement Index, we compare Multi-Audience Engagement Index with mobile survey. And then it send the result to reporting system and proposal an interested persons. Mobile surveys are easy, fast, and visitors' discomfort can be minimized. Also additional information can be provided mobile advantage. Mobile application to communicate with the database, real-time information on visitors' attitudes focused on the content stored. Database can provide different survey every time based on provided information. The example shown in the survey are as follows: Impressive scene, Satisfied, Touched, Interested, Didn't pay attention and so on. The suggested system is combine as 3 parts. The system consist of three parts, External Device, Server and Internal Device. External Device can record multi-Audience in the dark field with IR camera and sound signal. Also we use survey with mobile application and send the data to ERD Server DB. The Server part's contain contents' data, such as each scene's weights value, group audience weights index, camera control program, algorithm and calculate Multi-Audience Engagement Index. Internal Device presents Multi-Audience Engagement Index with Web UI, print and display field monitor. Our system is test-operated by the Mogencelab in the DMC display exhibition hall which is located in the Sangam Dong, Mapo Gu, Seoul. We have still gotten from visitor daily. If we find this system audience arousal factor with this will be very useful to create contents.

Estimation of Long-term Water Demand by Principal Component and Cluster Analysis and Practical Application (주성분분석과 군집분석을 이용한 장기 물수요예측과 활용)

  • Koo, Ja-Yong;Yu, Myung-Jin;Kim, Shin-Geol;Shim, Mi-Hee;Akira, Koizumi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.870-876
    • /
    • 2005
  • The multiple regression models which have two factors(population and commercial area) have been used to forecast the water demand in the future. But, the coefficient of population had a negative value because proper regional classification wasn't performed, and it is not reasonable because the population must be a positive factor. So, the regional classification was performed by principal component and cluster analysis to solve the problem. 6 regional characters were transformed into 4 principal components, and the areas were divided into two groups according to cluster analysis which had 4 principal components. The new regression models were made by each group, and the problem was solved. And, the future water demands were estimated by three scenarios(Active, moderate, and passive one). The increase of water demand ore $89.034\;m^3/day$ in active plat $49,077\;m^3/day$ in moderate plan, and $19,996\;m^3/day$ in passive plan. The water supply ability as scenarios is enough in water treatment plant, however, 2 reservoirs among 4 reservoirs don't have enough retention time in all scenarios.

Mediating Effect of Ease of Use and Customer Satisfaction in the Relationship between Mobile Shopping Mall of Service Quality and Repurchase Intention of University Student consumer (모바일쇼핑몰 서비스품질과 대학생 고객의 재구매의도 관계에서 사용용이성과 고객만족도의 매개효과)

  • Kim, Sun-A;Park, Ji-Eun;Park, Song-Choon
    • Management & Information Systems Review
    • /
    • v.38 no.1
    • /
    • pp.201-223
    • /
    • 2019
  • The purpose of this study is to verify empirically the causal relationship between service quality, ease of use, customer satisfaction, and repurchase intention of mobile shopping mall. And this study is to investigate the ease of use and customer satisfaction mediating effect of between service quality and repurchase intention. Therefore, 323 university students in Jeonnam area were surveyed and the structural equation model was derived based on previous research. Service quality of mobile shopping mall make a significant effect on using easiness, purchasing satisfaction and repurchase intention. However, among service quality of mobile shopping mall, service scape like mobile interface and site design made a positive effect on purchasing satisfaction, but did not any effect on repurchase intention. In other words, service quality factors that make positive effects on customer's pleasant using and repurchase intention make a positive effect on repurchase intention when providing and using the service customer wants faithfully rather than external part of the site and mutually influencing attitude or behavior well. The implications suggested by this study are as follows. First, service quality of mobile shopping mall makes a significant effect on repurchase intention, so it's necessary to improve CS service system so as to treat customers' inquiries or inconveniences actively during mobile shopping and return and refund of defective products quickly and conveniently. And, in addition to the finally used factors in analysis process, benefits using customers' grade by number of purchases, such as various events, coupons, reserve, etc. and active contents marketing strategies providing more various pleasures and values of shopping are necessary. Second, satisfaction of mobile shopping mall makes a positive effect on repurchase intention, so visiting of site and repurchasing of product are continuously done as customers' satisfaction on shopping mall is increasing. Therefore, shopping mall site requires differentiation of contents, exact plan and practice of service, marketing, etc. so that customers can feel more satisfaction. This study is significant as it systematically analyzed concepts of components that service quality of mobile shopping mall makes an effect on using easiness, purchasing satisfaction, and repurchase intention, verified the relations, systematized it by theoretical structure, and widened the understanding of effects making an effect on repurchase intention.

Comparison of Cold Hardiness in Canes and Buds of Kiwifruit Cultivars (품종에 따른 키위나무 눈과 가지의 내한성 비교)

  • Kim, H.L.;Chae, W.B.;Kim, J.G.;Lee, M.H.;Rhee, H.C.;Kim, S.H.;Kwack, Y.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.29-40
    • /
    • 2019
  • In Korea kiwifruit growing area is limited to southern coastal region and Jeju island, partly due to the lack of information on their cold hardiness in winter. This study was carried out to investigate cold hardiness of Korean kiwifruit cultivars in a period of dormancy for using it as preliminary data to expand the cultivation area of kiwifruit in Korea. A total of five kiwifruit cultivars in two species and hybrid, Actinidia deliciosa ('Hayward' and 'Garmrok'), A. chinensis ('Goldone') and A. arguta hybrid ('Bangwoori' and 'Skinny Green') were subjected to five freezing treatments of -12℃, -15℃, -18℃, -21℃ and -24℃. Cell membrane damage in all cultivars initiated in -18℃/32h and cell membrane stability was lost in -24℃ in most cultivars, except for 'Skinny Green'. Cold hardiness was estimated by 50% lethal temperature (LT50) which was determined by triphenyl tetrazolium chloride (TTC) reduction. In branches, LT50 was -15℃ in 'Hayward' and 'Garmrok', -18℃ in 'Bangwoori' and -21℃ in 'Goldone.' The LT50 of buds on 'Hayward' and 'Garmrok' was 56 and 42 hours in -15℃ and 4 and 11 hours in -18℃, respectively; however, LT50 of buds on 'Goldone' was 51 hours in -18℃ and that on 'Bangwoori' was 3 hours in -24℃. Cold hardiness results imply that it may be difficult for cultivars in A. deliciosa such as 'Hayward' and 'Garmrok' to be grown in the north of southern coastal region in Korea; however, it can be possible for several cultivars in A. chinensis and A. arguta hybrid to be grown in the northern part of Korean kiwifruit belt if cold tolerance in the thaw is confirmed.

A Study on Women's Casino Security Employees (여성 카지노 시큐리티 종사원에 관한 연구)

  • Kim, Hyeong-seok
    • Korean Security Journal
    • /
    • no.62
    • /
    • pp.135-158
    • /
    • 2020
  • In casinos, security personnel who manage the safety of customers and employees play a very important role. In particular, there is a high percentage of female employees in casinos, and because the ratio of female and male employees is similar, the probability of female customers or female employees experiencing accidents may be similar to or higher than that of males. Women's security agents who handle women's case accidents can provide female customers and employees with a security service that only women can do. However, most of the agents doing security work at casinos are male, and the proportion of women is very low. Therefore, this research is about employees who are currently working as women in casinos and conducted qualitative research to find out about various experiences they experienced while working in the casino. A total of five study participants were interviewed three times to analyze and categorize the data collected. The first question is the professor's recommendation, his personal information search and his acquaintance's recommendation. The second question, the factors behind the necessary skills at work, are various athletic skills, good physical conditions and foreign language skills. In the third question, the satisfaction factors of the task are the scarcity value of the work, the satisfaction of the pay, the suitability of the individual and the expectation of the future, and the unsatisfactory factors of the work are the risk of the work, the stress on the customer, the discrimination against the sex, the gaze around, the tiredness of the shift work. In the fourth question, factors on the need for female casino security agents are providing differentiated services to female customers, protecting female employees and providing opportunities for women in related majors. The results of this study were interviewed by an expert of more than 20 years in the casino security business, and female casino security agents said that since it is a necessary requirement, they should seek a direction for development through institutional and cognitive improvement.

A Study on the Coexistance of Ganghak(講學) and Yusik(遊息) space of Oksan Confucian Academy, Gyeongju: Directed Attention Restoration Theory Perspectives (주의집중 피로회복이론의 장으로 본 경주 옥산서원 강학 및 유식공간의 일원적 공간성)

  • Tak, Young-Ran;Sung, Jeong-Sang;Choi, Jong-Hee;Kim, Soon-Ae;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.3
    • /
    • pp.50-66
    • /
    • 2016
  • This study attempts to understand and explain how "Directed Attention Restorative Environment (DARE)" is managed and fostered in "Gang-Hak (講學)" and "Yu-Sik (遊息)" spaces both inside and outside of Oksan Seowon Confucian Academy, Gyeongju. Directed Attention is a pivotal element in human information processing so that its restoration is crucial for effective thinking and learning. According to Kaplan & Kaplan's Attention Restoration Theory, an environment, in order to be restorative, should have four elements: 'Being Away,' 'Extent,' 'Fascination,' and 'Compatibility.' We could confirm OkSan Seowon Confucian Academy has an inner logic that integrates two basically different spacial concepts of "Jangsu" and "Yusik" and thus fosters the Attention Restorative Environment. Particularly, the Four Mountains and Five Platforms (四山五臺) surrounding the premises provides an excellent learning environment, and is in itself educational in terms of the Neo-Confucian epistemology with "Attaining Knowledge by way of Positioning Things (格物致知)" as its principle precept, and of its aesthetics with "Connectedness with Nature" as its central tenet. This study attempts to recapture the value of Korea's cultural heritage concerning the Human/Nature relationship; and it may provide useful insights and practical guidelines/grounds in designing today's schools and campuses, where the young people's needs for the Directed Attention- and Attention Restorative- Servicescapes seem to be greater than ever.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.