• 제목/요약/키워드: 정보의 구조

검색결과 22,725건 처리시간 0.053초

SNS에서의 개선된 소셜 네트워크 분석 방법 (Improved Social Network Analysis Method in SNS)

  • 손종수;조수환;권경락;정인정
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.117-127
    • /
    • 2012
  • 최근 온라인 소셜 네트워크 서비스(SNS)의 사용자가 크게 늘어나고 있으며 다양한 분야에서 SNS의 사용자 관계 구조 및 메시지를 분석하기 위한 연구를 진행하고 있다. 그러나 대부분의 소셜 네트워크 분석 방법들은 노드 사이의 최단 거리를 기초로 하고 있으므로 계산 시간이 오래 걸린다. 이는 점차 대형화 되어가는 SNS의 데이터를 여러 분야에서 활용하는데 걸림돌이 되고 있다. 이에 따라 본 논문에서는 SNS의 사용자 그래프에서 사용자간 최단거리를 빠르게 찾기 위한 휴리스틱 기반의 최단 경로 탐색 방법을 제안한다. 제안하는 방법은 1) 트리로 표현된 소셜 네트워크에서 시작 노드와 목표 노드를 설정한다. 그리고 2) 만약 목표 노드가 경사 트리의 단말에 있다면 경사 트리가 시작하는 노드를 임시 골 노드로 설정한다. 마지막으로 3) 연결의 차수를 평가값으로 하는 휴리스틱 기반 최단거리 탐색을 수행한다. 이렇게 최단거리를 탐색한 후 매개 중심성 분석(Betweenness Centrality) 및 근접 중심성(Closeness Centrality)를 계산한다. 제안하는 방법을 사용하면 소셜 네트워크 분석에서 가장 많은 시간이 필요한 최단거리 탐색을 빠르게 수행할 수 있으므로 소셜 네트워크 분석의 효율성을 기대할 수 있다. 본 논문에서 제안하는 방법을 검증하기 위하여 약 16만 명으로 구성된 SNS에서의 실제 데이터를 이용하여 매개 중심성 분석과 근접 중심성 분석을 수행하였다. 실험 결과, 제안하는 방법은 전통적 방식에 비하여 매개 중심성, 근접 중심성의 계산 시간이 각각 6.8배, 1.8배 더 빠른 결과를 보였다. 본 논문에서 제안한 방법은 소셜 네트워크 분석의 시간을 향상시켜 여러 분야에서 사회 현상 및 동향을 분석하는데 유용하게 활용될 수 있다.

Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발 (Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments)

  • 유인진;서봉군;박도형
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.25-52
    • /
    • 2018
  • 본 연구는 소비자들이 상권에 대하여 수행하는 웹 탐색 활동과 감성평가를 반영하는 데이터인 지역구 연관감성어휘를 기반으로 서울시 내 대형 상업 공간으로 정의할 수 있는 각 지역구 간의 연관 감성 네트워크에 대하여 소셜 네트워크 분석을 수행하였다. 나아가 도출한 소셜 네트워크 지표를 지역구 공공 데이터와 결합하여 보다 다각적 측면을 고려한 지역구 상권의 매출액에 영향을 미치는 요인들을 검증하였고 그 영향력의 변화 또한 확인해 보았다. 정적 데이터로 표현되는 공공 데이터만을 통해 구성된 모형으로도 높은 설명력을 가지는 것을 확인할 수 있었으나, 소셜 네트워크 분석 결과로 도출된 네트워크 지표와 결합된 모형에서는 그 설명력이 더욱 향상된 것이 확인되었다. 공공 데이터에 대한 회귀 분석 결과, 투입된 22개의 요인들 중 '골목 상권 수,' '1인당 거주면적,' '주거환경만족도,' '거래증감률,' '3년 이상 생존율'의 5개의 요인이 지역구 상권 매출액에 유의한 영향을 미치는 것이 확인되었다. 이후 공공 데이터와 네트워크 지표 결합 모형에서 투입된 지표들은 '에고 네트워크의 밀도,' '연결 중심성,' '근접 중심성,' '매개 중심성,' '아이겐벡터 중심성'이며, 이 중 '연결 중심성'과 '아이겐벡터 중심성'이 매출액에 유의한 영향을 미치며 모형 내에서 가장 높은 영향력을 보유한 것이 확인되었다. 본 연구는 각 상권이 소비자가 원하는 감성을 고려한 도시 전략 계획 수립과 이행의 실증적 근거로 활용될 수 있을 것이며, 상권에 진입하거나 재창업하는 자영업자나 잠재 창업자를 바탕으로 지역구 상권이 보유한 감성과 그 관계 구조를 고려한 상권 진입 방향성을 제공할 수 있을 것이다.

비대칭적 전이효과와 SVM을 이용한 변동성 매도전략의 수익성 개선 (Performance Improvement on Short Volatility Strategy with Asymmetric Spillover Effect and SVM)

  • 김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.119-133
    • /
    • 2020
  • Fama에 의하면 효율적 시장에서는 일시적으로 높은 수익을 얻을 수는 있지만 꾸준히 시장의 평균적인 수익을 초과하는 투자전략을 만드는 것은 불가능하다. 본 연구의 목적은 변동성의 장중 비대칭적 전이효과를 이용하는 변동성 매도전략을 기준으로 투자 성과를 추가적으로 개선하기 위하여 SVM을 활용하는 투자 전략을 제안하고 그 투자성과를 분석하고자 한다. 한국 시장에서 변동성의 비대칭적 전이효과는 미국 시장의 변동성이 상승한 날은 한국 시장의 아침 동시호가에 변동성 상승이 모두 반영되지만, 미국 시장의 변동성이 하락한 날은 한국 시장의 변동성이 아침 동시호가에서 뿐만 아니라 장 마감까지 계속해서 하락하는 이상현상을 말한다. 분석 자료는 2008년부터 2018년까지의 S&P 500, VIX, KOSPI 200, V-KOSPI 200 등의 일별 시가지수와 종가지수이다. 11년 동안의 분석 결과, 미국 시장의 변동성이 상승으로 마감한 날은 그 영향력이 한국 시장의 아침 동시호가 변동성에 모두 반영되지만, 미국 시장의 변동성이 하락으로 마감한 날은 그 영향력이 한국 시장의 아침 동시호가뿐만 아니라 오후 장 마감까지도 계속해서 유의적으로 영향을 미치고 있다. 시장이 효율적이라면 미국 시장의 전일 변동성 변화는 한국 시장의 아침 동시호가에 모두 반영되고 동시호가 이후에는 추가적인 영향력이 없어야 한다. 이러한 변동성의 장중 비정상적 전이 패턴을 이용하는 변동성 매도전략을 제안하였다. 미국 시장의 전날 변동성이 하락한 경우 한국 시장에서 아침 동시호가에 변동성을 매도하고 장 마감시에 포지션을 청산하는 변동성 데이트레이딩전략을 분석하였다. 연수익률은 120%, 위험지표인 MDD는 -41%, 위험과 수익을 고려한 성과지수인 Sharpe ratio는 0.27을 기록하고 있다. SVM 알고리즘을 이용해 변동성 데이트레이딩전략의 성과 개선을 시도하였다. 2008년부터 2014년까지의 입력자료를 이용하여 V-KOSPI 200 변동성지수의 시가-종가 변동 방향을 예측하고, 시가-종가 변동율이(-)로 예측되는 경우에만 변동성 매도포지션을 진입하였다. 거래비용을 고려하면 2015년부터 2018년까지 테스트기간의 연평균수익률은 123%로 기준 전략 69%보다 크게 높아지고, 위험지표인 MDD도 -41%에서 -29%로 낮아져, Sharpe ratio가 0.32로 개선되고 있다. 연도별로도 모두 수익을 기록하면서 안정적 수익구조를 보여주고 있고, 2015년을 제외하고는 투자 성과가 개선되고 있다.

한국 기록관리행정의 변천과 전망 (Records Management and Archives in Korea : Its Development and Prospects)

  • 남효채
    • 한국기록관리학회지
    • /
    • 제1권1호
    • /
    • pp.19-35
    • /
    • 2001
  • 조선왕조의 기록관리 전통의 맥이 끊어진지 거의 한세기가 지난 1999년도에 한국은 "공공기관의 기록물관리에 관한 법률"을 제정 시행함으로써 기록관리의 새로운 시대를 맞이했다. 조선왕조실록에는 국사 전반에 걸쳐 오백년 간의 중요한 역사적 사실들이 기록되었다. 이것은 인류역사상 주요한 업적이며 전세계적으로 귀한 사례이다. 이것이 가능했던 것은 실록이 누대(累代)의 사관들이 저술하고 편찬한 일차자료인 기록물을 수집, 선정한 것이기 때문이다. 근대적 기록보존소에서는 중요한 공공기록물이 원형대로 보존될 필요가 있기 때문에 기록보존을 위해 중요한 국가 기록물을 평가 선별하는 근대적 기록보존제도를 확립해야 했다. 그러나 일제에 의한 식민지화로 그 기회를 빼앗겼고 우리의 훌륭한 기록보전 전통은 계승되지 못했다. 중앙화된 기록보존제도는 1969년 총무처에 정부기록보존소를 설립함으로써 발전하기 시작했다. 정부기록보존소는 조선왕조의 사고 전통을 계승해서 1984년 부산에 현대적 사고시설을 건축했다. 1998년 정부기록보존소는 대전정부종합청사로 본부를 이전하고 첨단 시청각기록물 서고를 갖추었다. 1996년부터 정부기록보존소는 마이크로필름 보존을 보완하고 수작업 등록시스템을 개선하기 위하여 기록물 관리시스템 전산화를 도입했다. 소장 기록물의 디지털화는 이용자에게 디지털 이미지를 제공하기 위한 주요한 사업이었다. 이를 위해 정부기록보존소는 새로 컴퓨터/서버 시스템을 구입하고 응용 소프트웨어를 개발했다. 이와 병행하여 정부기록보존소는 역사학 및 문헌정보학 배경을 가진 아키비스트들을 증원하여 고도의 전문화를 이루는 방향으로 인력구조를 크게 혁신하였다. 보존연구직과 전산직 역시 채용되었다. 새로운 기록물관리법은 2000년 1월 1일부터 시행되고 있다. 이 법은 한국의 기록물관리에 있어 다음과 같은 변화를 가져왔다. 첫째, 이 법은 입법 사법 행정부, 헌법기관, 육해공군, 국가정보원 등 모든 공공기관의 기록물을 규정한다. 범국가적으로 통일된 기록물관리체계가 갖추어지게 되었다. 둘째, 각 기관의 수준별로 공공기록물 관리 기관을 두게 되었다. 중앙기록물관리기관, 국회 및 사법부에 특수기록물관리기관, 대도시 및 도에 지방기록물 관리기관, 공공기관에 자료관 또는 특수자료관, 각 과단위에서는 기록물관리책임자가 기록관리를 책임지게 되었다. 셋째, 공공기관의 기록물은 생산시에 컴퓨터에 등록된다. 따라서 인터넷이나 컴퓨터망을 통해 기록물을 쉽게 추적, 검색할 수 있게 될 것이다. 넷째, 기록관리학 분야에서 전문적 훈련을 받은 기록물관리 전문요원 배치를 의무화함으로써 기록물의 전문적 관리를 보장하게 된다. 다섯째, 공공기록물의 불법적 처리는 처벌을 받을 수 있는 범죄를 구성한다. 앞으로 공공기록물관리는 한국정부의 '전자정부 추진정책'과 함께 발전할 것이다. 다음과 같은 변화가 예상된다. 첫째 공공기관에서는 전자결재 문서 외에 종이문서, 시청각기록물, 간행물 등도 모두 디지털화하여 행정의 효율화 및 생산성을 제고할게 될 것이다. 둘째, 국회는 이미 특수기록관을 설립하였다. 법원과 국가정보원도 뒤를 따를 것이다. 시도 차원에서 더 많은 기록관들이 설립될 것이다. 셋째, 우리 사회가 지식정보사회화 될수록 기록관리기능은 더욱 중요한 국가기능이 될 것이다. 더 많은 대학교, 학회, 시민단체들이 기록보존에 고한 인식제고에 참여하고, 기록보존운동이 범국민적 차원으로 심화될수록 한국의 기록물관리는 현재보다 눈에 띄게 발전할 것이다.

IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로 (A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation)

  • 강려은;양성병
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.169-196
    • /
    • 2017
  • 제4차 산업혁명의 도래로 IT(information technology)를 활용한 다양한 융합기술에 대한 관심이 높아지고 있으며, 이에 따른 고품질의 IT관련 교육서비스 제공의 필요성 및 중요성 또한 점차 증대되고 있다. 한편, 일반적인 교육서비스 품질 및 만족도에 관한 연구는 그 동안 다양한 맥락에서 활발히 진행된 바 있으나, IT교육 참가자를 대상으로 한 IT교육 서비스품질의 역할을 살펴본 연구는 상대적으로 부족한 것으로 파악된다. 이에 본 연구에서는 SERVPERF 모형 및 관련 선행연구를 바탕으로 IT교육 맥락에서 IT교육 서비스품질의 다섯 가지 차원(유형성, 신뢰성, 반응성, 확신성 및 공감성)을 도출하고, 이러한 세부 IT교육 서비스품질 요인이 학습자의 교육만족도, 나아가 현업적용의도 및 추천의도에 미치는 영향을 검증하였다. 또한, 이러한 영향이 학습자 직위(실무자 집단/관리자 집단) 및 참여동기(자발적 참여집단/비자발적 참여집단)에 따라 어떻게 달라지는지에 대한 추가분석도 실시하였다. 서울 소재 'M'교육기관 203명의 IT교육 참가자 대상 설문을 활용한 구조방정식모형 분석 결과, IT교육 서비스품질의 다섯 가지 차원 가운데 유형성, 신뢰성 및 확신성이 교육만족도에 유의한 영향을 주는 것으로 나타났으며, 이러한 교육만족도는 현업적용의도와 추천의도에도 유의한 영향을 주는 것으로 조사되었다. 또한, IT교육 서비스품질이 교육만족도에 미치는 영향 관계에서 학습자 직위 및 참여동기가 유의한 조절효과를 가진다는 사실을 확인하였다. 본 연구는 SERVPERF 모형을 활용하여 IT교육 맥락에서 IT교육 서비스품질의 영향력을 실증한 최초의 연구라는 점에서 학술적 의의가 있다. 본 연구결과가 IT교육 서비스 제공기관의 교육만족도 제고 및 효율적인 서비스 운영을 위한 실질적인 지침을 제공해 줄 수 있을 것으로 기대한다.

집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법 (Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.55-79
    • /
    • 2013
  • 본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.

인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로 (Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China)

  • 이재원;오상진
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.71-90
    • /
    • 2020
  • 최근 전 세계 보험업계에도 기계학습, 자연어 처리, 딥러닝 등의 인공지능 기술 활용을 통한 디지털 전환이 급속도로 확산하고 있다. 이에 따라 인공지능 기술을 기반으로 한 인슈어테크와 플랫폼 비즈니스 성공을 이룬 해외 보험사들도 증가하고 있다. 대표적으로 중국 최대 민영기업인 평안보험그룹은 '금융과 기술', '금융과 생태계'를 기업의 핵심 키워드로 내세우며 끊임없는 혁신에 도전한 결과, 인슈어테크와 디지털플랫폼 분야에서 괄목할만한 성과를 보이며 중국의 글로벌 4차 산업혁명을 선도하고 있다. 이에 본 연구는 평안보험그룹 인슈어테크와 플랫폼 비즈니스 활동을 ser-M 분석 모델을 통해 분석하여 국내 보험사들의 인공지능 기술기반 비즈니스 활성화를 위한 전략적 시사점을 제공하고자 했다. ser-M 분석 모델은 기업의 경영전략을 주체, 환경, 자원, 메커니즘 관점에서 통합적으로 해석이 가능한 프레임으로, 최고경영자의 비전과 리더십, 기업의 역사적 환경, 다양한 자원 활용, 독특한 메커니즘 관계가 통합적으로 해석되도록 연구하였다. 사례분석 결과, 평안보험은 안면·음성·표정 인식 등 핵심 인공지능 기술을 활용하여 세일즈, 보험인수, 보험금 청구, 대출 서비스 등 업무 전 영역을 디지털로 혁신함으로써 경비 절감과 고객서비스 발전을 이루었다. 또한 '중국 내 온라인 데이터'와 '회사가 축적한 방대한 오프라인 데이터 및 통찰력'을 인공지능, 빅데이터 분석 등 신기술과 결합하여 금융 서비스와 디지털 서비스 사업이 통합된 디지털 플랫폼을 구축하였다. 이러한 평안보험그룹의 성공 배경을 ser-M 관점에서 분석해 보면, 창업자 마밍즈 회장은 4차 산업혁명 시대의 디지털 기술발전, 시장경쟁 및 인구 구조의 변화를 빠르게 포착하여 새로운 비전을 수립하고 디지털 기술중시의 민첩한 리더십을 발휘하였다. 환경변화에 대응한 창업자 주도의 강력한 리더십을 바탕으로 인공지능 기술 투자, 우수 전문인력 확보, 빅데이터 역량 강화 등 내부자원을 혁신하고, 외부 흡수역량의 결합, 다양한 업종 간의 전략적 제휴를 통해 인슈어테크와 플랫폼 비즈니스를 성공적으로 끌어냈다. 이와 같은 성공사례 분석을 통하여 인슈어테크와 디지털플랫폼 도입을 본격 준비하고 있는 국내 보험사들에게 디지털 시대에 필요한 경영 전략과 리더십에 대한 시사점을 줄 수 있다.

국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교 (Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC)

  • 최영현;이규혜
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.91-108
    • /
    • 2020
  • 박지성 선수의 2005년 맨체스터 유나이티드 FC 입단 이후로, 국내에서 프로축구 유니폼 시장이 본격적으로 성장하기 시작했다. 이후, 국내 선수들의 해외 리그에서 활약이 계속되면서 국내에서도 잉글랜드 프리미어리그에 대한 대중의 관심이 지속되고 있다. 이러한 시점에서 본 연구는 국내 프로축구 팬들의 유니폼 소비에 전반적인 소비자 인식을 알아보고, 선수의 영입에 따른 소비자 인식 변화를 비교하고자 했다. EPL의 토트넘에서 활동하고 있는 손흥민 선수의 영입 전후를 중심으로 소셜 미디어에 나타난 프로축구 팬들의 소비자 인식과 구매 요인을 알아보았다. 'EPL 유니폼'을 키워드로, 국내 포털사이트와 소셜 미디어의 게시글을 수집하고, 텍스트 마이닝, SNA, 회귀분석을 사용하여 분석했다. 연구 결과, 첫째, 선수의 소속 팀, 실적, 포지션과 구단의 실적, 순위, 리그의 우승 여부가 프로축구 유니폼의 구매와 탐색에 있어 주요 요인으로 확인되었다. 가격, 디자인, 사이즈, 로고 등과 같은 항목보다 유니폼의 형태, 마킹, 정품 여부, 스폰서와 더 중요하게 작용하고 있었다. 둘째, 구조적 등위성 분석과 군집분석을 통해 국내 프로축구 팬들 사이에서 유니폼과 관련되어 언급되고 있는 주요 주제를 알아본 결과, EPL에 소속된 구단과 유명 선수들이 가장 핵심적인 주제로 나타났다. 셋째, 프로축구 유니폼에 대한 시기별 주제는 월드컵과 EPL 리그에 대한 관심에서 EPL에서 활동하는 다양한 국내외 선수들에 대한 관심으로, 2015년 이후에는 유니폼 자체에 대한 것으로 주제가 변화했다. 이를 통해, 선수들의 이적에 따라 선수가 소속된 해당 구단의 유니폼이 관심을 받고 있음을 알 수 있었다. 넷째, 남녀 소비자 모두 손흥민에 대한 관심이 증가함에 따라서 토트넘이 소속된 리그인 EPL에 대한 관심도 증가하는 것으로 나타났다. 여성의 경우 손흥민에 대한 관심이 증가함에 따라 축구 유니폼에 대해서도 관심을 가지는 것으로 나타난 반면, 남성의 경우 손흥민 선수에 대한 관심과 축구 유니폼에 대한 관심 사이의 관계가 유의하게 나타나지 않았다. 각 구단은 선수와 구단의 성적과 이미지 관리, 스폰서 브랜드 관리에 집중하고, 선수의 이적이 결정되면 선수의 자국에 해당 물량의 공급을 늘리며, 인기를 끌고 있는 선수의 등번호가 부착된 유니폼의 경우에는 여성을 위한 다양한 사이즈를 제공해야 할 필요가 있다.

불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델 (A Hybrid SVM Classifier for Imbalanced Data Sets)

  • 이재식;권종구
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.125-140
    • /
    • 2013
  • 어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.