본 연구는 기업들의 투자활동은 그들이 겪고 있는 재무제약의 수준에 따라 달라 질 수 있으며, 투자자금조달 전략 또한 달라질 수 있다는 선행연구들을 바탕으로, 국내 물류기업의 재무제약 수준과 전기의 투자활동 결과가 당기의 투자활동과 어떠한 관계가 있는지를 확인해보고 그 시사점을 확인하는 목적을 두고 수행하였다. 이를 위해 2021년 기준 한국산업표준분류 상 운수업 영위 총 340개사를 연구의 대상으로 선정하였으며, 비외감법인 등은 연구의 대상에서 제외하였다. 전자공시시스템을 통해 획득한 재무자료를 바탕으로 1996년-2021년 사이 총 6,155개의 패널데이터를 구축하고, 연구모형에 대한 검증을 시도하였다. 또한, 구축된 재무자료가 패널자료의 특성이 있는 점을 감안하여 오차항에 대한 이분산성과 자기상관에 대한 검정을 우선적으로 수행하였으며, 이전기의 투자활동과 당기의 투자활동과의 관련성은 패널GMM을 통해 분석을 시도하였다. 연구모형에 대한 검증결과, 우리나라 물류기업들은 재무제약 수준이 양호할수록 투자활동이 증가함을 확인할 수 있었다. 즉, 제무제약 수준이 양호한 집단과 투자활동현금흐름과는 정(+)의 관계가 모든 모형에서 확인 되었다. 이러한 결과는 기업이 처한 재무제약 수준에 따라 투자활동 의사결정이 달라지며, 재무제약이 있는 기업들의 투자활동이 위축된다는 기존 국내연구들과 동일한 결과로 해석된다. 또한, 전기의 투자활동 결과가 당기의 투자활동에 영향을 미치는지에 대한 검증모형에서는 전기의 투자활동은 당기의 투자활동에 영향을 미치는 것으로 분석되었으나, t-2기의 투자활동은 당기의 투자활동과 유의한 관계를 확인 할 수는 없었다. 통제변수들 중 기업규모와 현금흐름변수는 정(+)의 관련성이 있는 것으로 나타났으며, 부채규모와 자산유형화정도변수는 부(-)의 관련성을 확인할 수 있었다. 즉, 기업규모가 상대적으로 크고, 현금흐름이 원활할수록 투자활동에 보다 적극적인 반면, 높은 부채규모와 유형자산 규모는 물류기업들의 투자활동을 위축함을 알 수 있었다. 이런한 결과는 재무제약 하에서는 현금흐름 등과 같은 내부자금조달원과는 정(+)의 관계가 있으며, 부채 등과 같은 타인자본과는 부(-)관계가 실증된 선행연구들과 동일한 결과로 해석된다. 본 연구는 국내 물류기업들이 겪게 되는 재무제약 수준과 투자활동과의 관련성을 제시하였다는 점과 물류기업들의 투자활동 의사결정에 유용한 정보를 제공하였다는데 그 의의가 있을 것이다. 하지만, 향후 재무제약 요인을 보다 확대한 연구가 뒷받침 된다면 본 연구의 시사점이 보다 강화 될 것으로 판단된다.
최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.
지난 10여 년간 딥러닝(Deep Learning)은 다양한 기계학습 알고리즘 중에서 많은 주목을 받아 왔다. 특히 이미지를 인식하고 분류하는데 효과적인 알고리즘으로 알려져 있는 합성곱 신경망(Convolutional Neural Network, CNN)은 여러 분야의 분류 및 예측 문제에 널리 응용되고 있다. 본 연구에서는 기계학습 연구에서 가장 어려운 예측 문제 중 하나인 주식시장 예측에 합성곱 신경망을 적용하고자 한다. 구체적으로 본 연구에서는 그래프를 입력값으로 사용하여 주식시장의 방향(상승 또는 하락)을 예측하는 이진분류기로써 합성곱 신경망을 적용하였다. 이는 그래프를 보고 주가지수가 오를 것인지 내릴 것인지에 대해 경향을 예측하는 이른바 기술적 분석가를 모방하는 기계학습 알고리즘을 개발하는 과제라 할 수 있다. 본 연구는 크게 다음의 네 단계로 수행된다. 첫 번째 단계에서는 데이터 세트를 5일 단위로 나눈다. 두 번째 단계에서는 5일 단위로 나눈 데이터에 대하여 그래프를 만든다. 세 번째 단계에서는 이전 단계에서 생성된 그래프를 사용하여 학습용과 검증용 데이터 세트를 나누고 합성곱 신경망 분류기를 학습시킨다. 네 번째 단계에서는 검증용 데이터 세트를 사용하여 다른 분류 모형들과 성과를 비교한다. 제안한 모델의 유효성을 검증하기 위해 2009년 1월부터 2017년 2월까지의 약 8년간의 KOSPI200 데이터 2,026건의 실험 데이터를 사용하였다. 실험 데이터 세트는 CCI, 모멘텀, ROC 등 한국 주식시장에서 사용하는 대표적인 기술지표 12개로 구성되었다. 결과적으로 실험 데이터 세트에 합성곱 신경망 알고리즘을 적용하였을 때 로지스틱회귀모형, 단일계층신경망, SVM과 비교하여 제안모형인 CNN이 통계적으로 유의한 수준의 예측 정확도를 나타냈다.
제4차 산업혁명의 도래로 IT(information technology)를 활용한 다양한 융합기술에 대한 관심이 높아지고 있으며, 이에 따른 고품질의 IT관련 교육서비스 제공의 필요성 및 중요성 또한 점차 증대되고 있다. 한편, 일반적인 교육서비스 품질 및 만족도에 관한 연구는 그 동안 다양한 맥락에서 활발히 진행된 바 있으나, IT교육 참가자를 대상으로 한 IT교육 서비스품질의 역할을 살펴본 연구는 상대적으로 부족한 것으로 파악된다. 이에 본 연구에서는 SERVPERF 모형 및 관련 선행연구를 바탕으로 IT교육 맥락에서 IT교육 서비스품질의 다섯 가지 차원(유형성, 신뢰성, 반응성, 확신성 및 공감성)을 도출하고, 이러한 세부 IT교육 서비스품질 요인이 학습자의 교육만족도, 나아가 현업적용의도 및 추천의도에 미치는 영향을 검증하였다. 또한, 이러한 영향이 학습자 직위(실무자 집단/관리자 집단) 및 참여동기(자발적 참여집단/비자발적 참여집단)에 따라 어떻게 달라지는지에 대한 추가분석도 실시하였다. 서울 소재 'M'교육기관 203명의 IT교육 참가자 대상 설문을 활용한 구조방정식모형 분석 결과, IT교육 서비스품질의 다섯 가지 차원 가운데 유형성, 신뢰성 및 확신성이 교육만족도에 유의한 영향을 주는 것으로 나타났으며, 이러한 교육만족도는 현업적용의도와 추천의도에도 유의한 영향을 주는 것으로 조사되었다. 또한, IT교육 서비스품질이 교육만족도에 미치는 영향 관계에서 학습자 직위 및 참여동기가 유의한 조절효과를 가진다는 사실을 확인하였다. 본 연구는 SERVPERF 모형을 활용하여 IT교육 맥락에서 IT교육 서비스품질의 영향력을 실증한 최초의 연구라는 점에서 학술적 의의가 있다. 본 연구결과가 IT교육 서비스 제공기관의 교육만족도 제고 및 효율적인 서비스 운영을 위한 실질적인 지침을 제공해 줄 수 있을 것으로 기대한다.
최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.
본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.
보건소의 의약분업 시행에 따른 업무변화와 업무 개선방안에 대해 조사 분석하여 보건소의 기능 및 역할 재정립에 필요한 기초자료를 얻고자 2001년 4월과 5월에 경상북도내 25개 보건소와 대구광역시 6개 보건소의 소장 또는 과장에게 의약분업 실시 전후의 보건소 업무 및 진료실적변화 정도를 조사하였고, 이와 함께 보건소 공무원 221명에게 의약분업에 따른 보건소 업무개선방안에 대해 설문 조사하였다. 31개 대상 보건소 가운데 77.4%인 24개 보건소가 주민진료편의 조치를 취하였다고 하였다. 주민 진료편의 조치를 한 보건소의 조치내용으로 약국배치도마련(73.9%), 인테리어 개선(39.1%), 전자처방전달시스템 도입(34.8%) 순이었다. 의약분업 실시 후 의사는 대상 보건소의 3.2%에서 감소하였다. 의약분업에 따라 월평균 진료건수는 대상 보건소의 58.1%에서 감소하였다고 하였고, 조제건수는 96.4%, 총진료비는 80.6%, 본인부담금은 80.6%, 약품구입비는 96.7%의 보건소에서 감소하였다고 하였다. 의약분업 실시 이후 진료부문에 비해 보건사업 부문의 비중은 54.2%의 보건소에서 증가하였다고 하였다. 의약분업 전후이 분기별 진료실적을 분석한 결과 진료실인원은 의약분업이전과 비교하여 의약분업 이후에 감소하였고, 진료연인원은 군보건소와 보건의료원은 감소하였으며, 시화 구보건소는 감소했다가 점차 증가하고 있다. 조제건수 총진료비 본인부담금 약품구입비는 크게 감소하였다. 보건소 공무원들은 의약분업 실시 이후 진료부문의 기능에 대해서는 57.6%가 축소시켜야 한다고 하였고, 보건소에서 우선적으로 개선해야 할 부분으로는 보건사업내용 개발(62.4%), 인력재배치(51.6%), 사업우선순위 결정(48.4%), 조직개편(36.2%), 진료서비스의 질 향상(32.1%), 예산재배치(23.1%) 순으로 응답하였다. 보건소의 이미지를 개선하기 위해서는 지역주민건강정보관리 강화(60.7%)가 가장 시급하다고 하였으며 홍보를 통한 보건소의 이용 확대(15.8%), 보건소 공무원의 친절(15.3%), 건강상담요원 배치(8.2%) 순이었다. 의약분업 실시 이후 바람직한 보건소 역할 설정을 위하여 보건소 전체 업무 영역에 대해 의약분업 이전과 이후에 상대비중을 매기도록 한 결과 25개 세부영역 중 일반진료 및 응급진료 영역만 모두 상대비중이 높아졌다. 의약분업 이후 보건소가 중점을 두어야 할 우선 순위 5위까지의 업무영역은 순서대로 예방접종, 건강증진, 모자보건, 급만성전염병, 지역보건의료계획 이었다. 향후 보건소가 바람직한 공공보건의료조직으로 기능 및 역할을 재정립하기 위해서는 의약분업이라는 중대한 보건의료환경변화를 계기로 진료부문의 기능은 축소하되 노후시설 장비의 개선, 진료방식의 다양화, 건강정보관리 강화 등 진료서비스의 내용과 질에 있어서는 강화하는 방향으로 나아가야 할 것이다. 또한 인력재배치 및 조직개편과 함께 다양한 보건사업의 개발과 지역특성에 맞는 사업우선순위에 의해 예방접조, 건강증진, 모자보건, 급 만성전염병, 지역보건의료계획 수립, 구강보건, 만성퇴행성질환 등 지역주민의 건강증진 질병예방 기능을 강화하되 지역특성(대도시, 중소도시, 농어촌)에 맞게 예방위주의 건강 증진업무와 환자 진료업무의 비중을 차별화 시키는 방향으로 개선해 나가야 할 것이다.
전체 결과의 80%가 전체 원인의 20%에 의해 일어난다는 파레토 법칙(Pareto principle)은 상위 20%의 핵심 고객에 대한 우선적인 마케팅을 비롯하여 기업 경영의 많은 부분에서 적용되어 왔다. 파레토 법칙과는 대조적으로, 80%의 사소한 다수가 20%의 핵심적인 소수보다 우월한 가치를 창출한다는 롱테일 법칙(Long Tail theory)은 ICT(Information and Communication Technology)의 발전과 함께 새로운 경영 패러다임으로 주목 받아오고 있다. 본 연구의 목적은 경영 현장에서 양대 흐름을 형성해온 이러한 법칙들이 변화무쌍한 글로벌 가상화 환경에서 기업의 핵심적인 성공 요인이라고 할 수 있는 가상 지식 협업에는 어떻게 관련되는지를 규명하는 것이다. 이를 위해, 대표적인 가상 지식 협업 커뮤니티인 위키피디아에서 품질 최상위 등급인 피쳐드 아티클(Featured Article) 레벨로 승급된 2,978개의 아티클에 대한 협업 행위를 분석하였다. 즉, 각 아티클 그룹에서 편집 횟수 기준 상위 20%에 속하는 참여자들의 총 편집 횟수가 전체 편집 횟수에서 차지하는 비율인 파레토 비율(Pareto ratio)이 지식 협업 효율성과 어떤 관계를 가지고 있는지를 도출하였다. 그리고, 이러한 연구를 편집 참여를 통한 지식 공유에 대한 전체적인 불평등 정도를 나타내는 지니 계수(Gini coefficient)의 영향 및 그룹의 작업 특성을 반영하도록 확장하였다. 결과적으로, 지식 공유의 파레토 비율과 지니 계수가 증가하면 지식 협업 효율성도 높아지지만, 이러한 변수들이 일정 수준 이상으로 증가하면 오히려 지식 협업 효율성이 낮아지는 역 U자(inverted U-shaped) 관계가 있음을 확인하였다. 그리고, 이러한 관계는 인지적 노력을 상대적으로 더 많이 요구하는 학문적인 특성의 작업에서 더 민감하게 작용하는 것으로 보인다.
2013년 누적인원 2억명을 돌파한 한국의 영화 산업은 매년 괄목할만한 성장을 거듭하여 왔다. 하지만 2015년을 기점으로 한국의 영화 산업은 저성장 시대로 접어들어, 2016년에는 마이너스 성장을 기록하였다. 영화산업을 이루고 있는 각 이해당사자(제작사, 배급사, 극장주 등)들은 개봉 영화에 대한 시장의 반응을 예측하고 탄력적으로 대응하는 전략을 수립해 시장의 이익을 극대화하려고 한다. 이에 본 연구는 개봉 후 역동적으로 변화하는 관람객 수요 변화에 대한 탄력적인 대응을 할 수 있도록 주차 별 관람객 수를 예측하는데 목적을 두고 있다. 분석을 위해 선행연구에서 사용되었던 요인 뿐 아니라 개봉 후 역동적으로 변화하는 영화의 흥행순위, 매출 점유율, 흥행순위 변동 폭 등 선행연구에서 사용되지 않았던 데이터들을 새로운 요인으로 사용하고 Naive Bays, Random Forest, Support Vector Machine, Multi Layer Perception등의 기계학습 기법을 이용하여 개봉 일 후, 개봉 1주 후, 개봉 2주 후 시점에는 차주 누적 관람객 수를 예측하고 개봉 3주 후 시점에는 총 관람객 수를 예측하였다. 새롭게 제시한 변수들을 포함한 모델과 포함하지 않은 모델을 구성하여 실험하였고 비교를 위해 매 예측시점마다 동일한 예측 요인을 사용하여 총 관람객 수도 예측해보았다. 분석결과 동일한 시점에 총 관람객 수를 예측했을 경우 보다 차주 누적 관람객 수를 예측하는 것이 더 높은 정확도를 보였으며, 새롭게 제시한 변수들을 포함한 모델의 정확도가 대부분 높았으며 통계적으로 그 차이가 유의함으로써 정확도에 기여했음을 확인할 수 있었다. 기계학습 기법 중에는 Random Forest가 가장 높은 정확도를 보였다.
디지털 환경의 도래와 언제 어디서나 접근할 수 있는 고속 네트워크의 도입으로 디지털 콘텐츠의 자유로운 유통과 이용이 가능해졌다. 이러한 환경은 역설적으로 다양한 저작권 침해를 불러 일으키고 있으며, 온라인 쇼핑몰에서 사용하는 상품 이미지의 도용이 빈번하게 발생하고 있다. 인터넷 쇼핑몰에 올라오는 상품 이미지와 관련해서는 저작물성에 대한 시비가 많이 일어나고 있다. 2001년 대법원 판결에 의하면 햄 광고를 위하여 촬영한 사진은 단순히 제품의 모습을 전달하는 사물의 복제에 불과할 뿐 창작적인 표현이 아니라고 적시하였다. 다만 촬영자의 손해액에 대해서는 인정함으로써 광고사진 촬영에 소요되는 통상적인 비용을 손해액으로 산정하게 하였다. 상품 사진 이외의 실내사진이라 하여도 '한정된 공간에서 촬영되어 누가 찍어도 동일한 사진'이 나올 수 밖에 없는 경우에는 창작성을 인정하지 않고 있다. 2003년 서울지방법원의 판례는 쇼핑몰에 사용된 사진에서 피사체의 선정, 구도의 설정, 빛의 방향과 양의 조절, 카메라 각도의 설정, 셔터의 속도, 셔터찬스의 포착 기타 촬영방법, 현상 및 인화 등의 과정에서 촬영자의 개성과 창조성이 인정되면 저작권법에 의하여 보호되는 저작물에 해당한다고 선고하여 손해를 인정하였다. 결국 쇼핑몰 이미지도 저작권법상의 보호를 받기 위해서는 단순한 제품의 상태를 전달하는 것이 아니라 촬영자의 개성과 창조성이 인정될 수 있는 노력이 필요하다는 것이며, 이에 따라 쇼핑몰 이미지를 제작하는 비용이 상승하고 저작권보호의 필요성은 더욱 높아지게 되었다. 온라인 쇼핑몰의 상품 이미지는 풍경사진이나 인물사진과 같은 일반 영상과 달리 매우 독특한 구성을 갖고 있으며, 따라서 일반 영상을 위한 이미지 워터마킹 기술로는 워터마킹 기술의 요구사항을 만족시킬 수 없다. 쇼핑몰에서 주로 사용되는 상품 이미지들은 배경이 흰색이거나 검은색, 또는 계조(gradient)색상으로 이루어져 있어서 워터마크를 삽입할 수 있는 공간으로 활용이 어렵고, 약간의 변화에도 민감하게 느껴지는 영역이다. 본 연구에서는 쇼핑몰에 사용되는 이미지의 특성을 분석하고 이에 적합한 이미지 워터마킹 기술을 제안하였다. 제안된 이미지 워터마킹 기술은 상품 이미지를 작은 블록으로 분할하고, 해당 블록에 대해서 DCT 양자화 처리를 함으로써 워터마크 정보를 삽입할 수 있도록 하였다. 균일한 DCT 계수 양자화 값의 처리는 시각적으로 영상에 블록화 현상을 불러오기 때문에 제안한 알고리즘에서는 블록의 경계 면에 붙어있는 영상 값에 대해서는 양자화 값의 분배를 작게 하고, 경계 면에서 멀리 떨어져있는 영상 값에 대해서는 양자화 값의 분배를 크게 함으로써 영상의 객관적 품질뿐 아니라 시각적으로 느끼는 주관적 품질도 향상 시켰다. 제안한 알고리즘에 의해서 워터마크가 삽입된 쇼핑몰 이미지의 PSNR(Peak Signal to Noise Ratio)은 40.7~48.5[dB]로 매우 우수한 품질을 보였으며, 일반 쇼핑몰 이미지에서 많이 사용되는 JPEG 압축은 QF가 70 이상인 경우에는 BER이 0이 나왔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.