• Title/Summary/Keyword: 정보기술활용

Search Result 15,586, Processing Time 0.045 seconds

A Study on design management of the design industry and 10 strategic industries in Busan Metropolitan City (부산광역시 10대전략산업과 디자인산업의 디자인경영에 관한 연구)

  • Park, Kwang-Cheol;Cho, Kyoung-Seop
    • Management & Information Systems Review
    • /
    • v.30 no.4
    • /
    • pp.293-314
    • /
    • 2011
  • The current study investigated the position of future strategy analyzed from the perspective of design management in relation to 10 strategic industries implemented through 3 steps based on promising growth and advancement of Busan industries and evidence provided from a study on the development program of design industry in Busan. It elucidated the role of design industry as a key role from the perspective of design management in an age of creative revolution of futures values. It analyzed the associations between composition of future strategy and design industry in 10 strategic industries of Busan, and explained the relationships with the strategic industries. The perspective of design management involves that design as a ground of values is an industry of the future values, which performs a key strategic function and role, and a theoretical investigation examined the relationships between main functions of design management and business management. Chapter 3 organized items proposed in the design development program in Busan and examined goals and systems which become basic formation of establishment of design strategy in Busan and conditions for design industry in the associations with strategic industry. Chapter 4 described priorities of practicability by step through analyzing and grouping top 30 projects in Busan industry including meanings as key strategy, position relations, and policy priorities by analyzing elements of design management of strategic industry and describing and analyzing the concept of promoting Busan design. The theme of the present study is to change perception of design management as a key value and a condition to decide creativity industry into future industry and to evaluate vision of Busan design industry and meanings proposed as proceeding strategy. The early 21st century is an age when agrarian society has changed into industrial society is dominated by knowledge economy of the information revolution and one should prepare for the growth phase of creative innovation based on creative revolution of the 4th wave of creative society by design management which has become a center in 2000s on the whole. With the advent of creative paradigm and based on the function and role of the current creative economy age new innovation DNA of design management will be created. Design process has changed through information and knowledge-oriented trends of digital through convergence between industries from industrial design to convergence of industries, and it is expected that integrated design of value creation using information and technology will play a key role in Busan design industry development and top 10 strategic industries.

  • PDF

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System (Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템)

  • Kang, Soyi;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.157-173
    • /
    • 2021
  • With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users' personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users' actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.

Application of diversity of recommender system accordingtouserpreferencechange (사용자 선호도 변화에 따른 추천시스템의 다양성 적용)

  • Na, Hyeyeon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Recommender Systems have been huge influence users and business more and more. Recently the importance of E-commerce has been reached rapid growth greatly in world-wide COVID-19 pandemic. Recommender system is the center of E-commerce lively. Top ranked E-commerce managers mentioned that recommender systems have a major influence on customer's purchase such as about 50% of Netflix, Amazon sales from their recommender systems. Most algorithms have been focused on improving accuracy of recommender system regardless of novelty, diversity, serendipity etc. Recommender systems with only high accuracy cannot satisfy business long-term profit because of generating sales polarization. In addition, customers do not experience enjoyment of shopping from only focusing accuracy recommender system because customer's preference is changed constantly. Therefore, recommender systems with various values need to be developed for user's high satisfaction. Reranking is the most useful methodology to realize diversity of recommender system. In this paper, diversity of recommender system is represented through constructing high similarity with users who have different preference using each user's purchased item's category algorithm. It is distinguished from past research approach which is changing the algorithm of recommender system without user's diversity preference level. We tried to discover user's diversity preference level and observed the results how the effect was different according to user's diversity preference level. In addition, graph-based recommender system was used to show diversity through user's network, not collaborative filtering. In this paper, Amazon Grocery and Gourmet Food data was used because the low-involvement product, such as habitual product, foods, low-priced goods etc., had high probability to show customer's diversity. First, a bipartite graph with users and items simultaneously is constructed to make graph-based recommender system. However, each users and items unipartite graph also need to be established to show diversity of recommender system. The weight of each unipartite graph has played crucial role changing Jaccard Distance of item's category. We can observe two important results from the user's unipartite network. First, the user's diversity preference level is observed from the network and second, dissimilar users can be discovered in the user's network. Through the research process, diversity of recommender system is presented highly with small accuracy loss and optimalization for higher accuracy is possible controlling diversity ratio. This paper has three important theoretical points. First, this research expands recommender system research for user's satisfaction with various values. Second, the graph-based recommender system is developed newly. Third, the evaluation indicator of diversity is made for diversity. In addition, recommender systems are useful for corporate profit practically and this paper has contribution on business closely. Above all, business long-term profit can be improved using recommender system with diversity and the recommender system can provide right service according to user's diversity level. Lastly, the corporate selling low-involvement products have great effect based on the results.

Are you a Machine or Human?: The Effects of Human-likeness on Consumer Anthropomorphism Depending on Construal Level (Are you a Machine or Human?: 소셜 로봇의 인간 유사성과 소비자 해석수준이 의인화에 미치는 영향)

  • Lee, Junsik;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.129-149
    • /
    • 2021
  • Recently, interest in social robots that can socially interact with humans is increasing. Thanks to the development of ICT technology, social robots have become easier to provide personalized services and emotional connection to individuals, and the role of social robots is drawing attention as a means to solve modern social problems and the resulting decline in the quality of individual lives. Along with the interest in social robots, the spread of social robots is also increasing significantly. Many companies are introducing robot products to the market to target various target markets, but so far there is no clear trend leading the market. Accordingly, there are more and more attempts to differentiate robots through the design of social robots. In particular, anthropomorphism has been studied importantly in social robot design, and many approaches have been attempted to anthropomorphize social robots to produce positive effects. However, there is a lack of research that systematically describes the mechanism by which anthropomorphism for social robots is formed. Most of the existing studies have focused on verifying the positive effects of the anthropomorphism of social robots on consumers. In addition, the formation of anthropomorphism of social robots may vary depending on the individual's motivation or temperament, but there are not many studies examining this. A vague understanding of anthropomorphism makes it difficult to derive design optimal points for shaping the anthropomorphism of social robots. The purpose of this study is to verify the mechanism by which the anthropomorphism of social robots is formed. This study confirmed the effect of the human-likeness of social robots(Within-subjects) and the construal level of consumers(Between-subjects) on the formation of anthropomorphism through an experimental study of 3×2 mixed design. Research hypotheses on the mechanism by which anthropomorphism is formed were presented, and the hypotheses were verified by analyzing data from a sample of 206 people. The first hypothesis in this study is that the higher the human-likeness of the robot, the higher the level of anthropomorphism for the robot. Hypothesis 1 was supported by a one-way repeated measures ANOVA and a post hoc test. The second hypothesis in this study is that depending on the construal level of consumers, the effect of human-likeness on the level of anthropomorphism will be different. First, this study predicts that the difference in the level of anthropomorphism as human-likeness increases will be greater under high construal condition than under low construal condition.Second, If the robot has no human-likeness, there will be no difference in the level of anthropomorphism according to the construal level. Thirdly,If the robot has low human-likeness, the low construal level condition will make the robot more anthropomorphic than the high construal level condition. Finally, If the robot has high human-likeness, the high construal levelcondition will make the robot more anthropomorphic than the low construal level condition. We performed two-way repeated measures ANOVA to test these hypotheses, and confirmed that the interaction effect of human-likeness and construal level was significant. Further analysis to specifically confirm interaction effect has also provided results in support of our hypotheses. The analysis shows that the human-likeness of the robot increases the level of anthropomorphism of social robots, and the effect of human-likeness on anthropomorphism varies depending on the construal level of consumers. This study has implications in that it explains the mechanism by which anthropomorphism is formed by considering the human-likeness, which is the design attribute of social robots, and the construal level of consumers, which is the way of thinking of individuals. We expect to use the findings of this study as the basis for design optimization for the formation of anthropomorphism in social robots.

A Comparative Study of Domestic Travel Patterns and Determinant Factors Affecting Satisfaction by Generations (대한민국 국민의 세대별 국내여행 방식 및 만족도 영향요인)

  • Mi-Sook Lee;Yoon-Joo Park
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.137-166
    • /
    • 2020
  • While South Koreans overseas travelling rate has been increased every year, domestic travelling rate has been at a standstill for several years. The purpose of this study is to analyze domestic traveling styles of Koreans according to their generations in order to provide generation-specific traveling services. For this purpose, we categorized the survey respondents into four different generations, which are Millennium (age 19~34), X generation (35~54), Baby Boomer (55~64) and senior by following the criterions of the Korea National Tourism Organization. After then, we analyze factors related to travel preparation process, the actual traveling activities and satisfaction after the travel. In this study, 16,713 data collected by the Ministry of Culture, Sports and Tourism are used. The results of this study show that Korean people tends to acquire domestic traveling information from their own or acquaintances past experiences. Also, they do not prefer the organized trip for domestic travels, thus do not buy package products a lot. In addition, natural scenery, rich in cultural heritage, and convenient accommodation are the most important determinant factors affecting the overall travel satisfaction of level for all generations. The traveling characteristics for each generation are as follows. Millennium get traveling information from the internet a lot, and more specifically, they refer portal sites and social network services (SNS) in many cases. Also, they tend to travel in summer peak season to popular destinations and pursues active traveling experiences. Generation X has similar traveling patterns with Millennium, however they major transportation method is using their own car. Also, transportation convenience and satisfactory leisure activity are important factors affecting the overall satisfaction level to Generation X. On the other hand, Baby boomer generation has a greater emphasis on appreciation of nature, visiting famous restaurants, and relaxation, rather than actively participating experiencing programs. They travel evenly in summer and spring/fall season to many different areas instead of focusing on popular tourist spots. In addition, shopping and eating delicious food are the important factors affecting the overall satisfaction level for them. Lastly, Senior generation has similar characteristics with Baby boomer in many ways, however, they travel a lot on the same day using public transportations or car rental service. They prefer spring and autumn trips rather than summer peak season, and tend to buy packaged travel products a lot compared with other generations. If these different traveling characteristics of each generation are considered for organizing and customizing tourism services, it is expected that domestic tourism satisfaction level will be ultimately increased.

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.

Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset (기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구)

  • Juhyoung Sung;Kiwon Kwon;Kyoungwon Park;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.121-130
    • /
    • 2024
  • As internet and communication technology (ICT) is improved exponentially, types and amount of available data also increase. Even though data analysis including statistics is significant to utilize this large amount of data, there are inevitable limits to process various and complex data in general way. Meanwhile, there are many attempts to apply machine learning (ML) in various fields to solve the problems according to the enhancement in computational performance and increase in demands for autonomous systems. Especially, data processing for the model input and designing the model to solve the objective function are critical to achieve the model performance. Data processing methods according to the type and property have been presented through many studies and the performance of ML highly varies depending on the methods. Nevertheless, there are difficulties in deciding which data processing method for data analysis since the types and characteristics of data have become more diverse. Specifically, multi-variate data processing is essential for solving non-linear problem based on ML. In this paper, we present a multi-variate tabular data processing scheme for ML-aided data analysis by using Titanic dataset from Kaggle including various kinds of data. We present the methods like input variable filtering applying statistical analysis and normalization according to the data property. In addition, we analyze the data structure using visualization. Lastly, we design an ML model and train the model by applying the proposed multi-variate data process. After that, we analyze the passenger's survival prediction performance of the trained model. We expect that the proposed multi-variate data processing and visualization can be extended to various environments for ML based analysis.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.