• 제목/요약/키워드: 정밀 금속 가공

검색결과 123건 처리시간 0.026초

초정밀가공 기술의 현황과 전망

  • 강철희
    • 한국정밀공학회지
    • /
    • 제6권4호
    • /
    • pp.11-20
    • /
    • 1989
  • 마이크로 일렉트로닉스(Microelectronics)를 중심으로 하는 산업혁명이 진행되고 있는 시점에서 전자, 광학 또는 신소재 부품에 대한 형상과 치수 또는 표면거칠기에 대한 정확도와 정밀도가 엄격하게 요구되고 있다. 예를 들어 경취 재료인 반도체의 웨이화( w-afer), 수정진동자 자기헷트, 비구면렌즈 또는 연질 금속의 레이저빔(Laser Beam) 프린터 용 포리곤 밀러(Polygon Mirror), 자기디스크, 복사기용 드럼(drum), 레저기기용 반사밀러 등 가공정밀도를 향상시키기 위해서는 과거의 가공기술을 대치할 수 있는 새로운 초정밀가공 기술의 도입이 활발하게 진행되고 있다. 경취성 재료의 초정밀가공은 지금까지는 랩핑(lappi- ng), 폴리싱(polishing)의 가공기술이 주체였으나, 최근의 엄격한 부품정밀도에 대응하기 위하여 전가공을 초정밀 연삭가공으로 평면도,표면거칠기, 가공변질층을 향상시키고 다듬질 가공은 폴리싱으로 하여 표면거칠기를 향상시켜야 하는 가공기술이 보급되고 있다. 일반연질 금속의 다듬질가공은 유리지립을 이용하는 랩핑이나 폴리싱으로 다듬질 가공을 진행하고 있었 으나 형상정도와 표면정밀도를 동시에 얻는다는 것이 어렵고 또 가공시간이 너무 길어서 매우 고가인 것이 되고 말았다. 그러나 유리에서 연질금속으로 재료를 전환시키고 저가격화, 양산 화의 요구, 정밀도 향상과 부품의 안정화 등등 여러 이유로서 다아아몬드(Diamond) 공구로 mirror surface 를 만드는 초정밀 경면연삭 가공기술(precision turning with diamond)의 발달 로 이제는 완전히 새로운 가공기술로 대치되고 말았다. 다이아몬드에 의한 초정밀절삭은 공구 끝이 매우 예리하고 마모가 매우 적은 단결정 다이아몬드를 이용하고 절삭가공 기계는 운동정도 를 피가공물에 정확히 전사 시키는 방법이며 따라서 가공기계는 고도의 운동정밀도가 요구되며 그외에 강성, 진동, 열변이, 제어면에서 엄격한 검도가 있어야 한다.

  • PDF

정면밀링용 공정의 최상설계에 대한 시뮬레이션

  • 김정현;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.57-62
    • /
    • 2001
  • 밀링은 회전공구를 사용하여 금속을 제거하는 효율적인 방법으로, 특히 수직밀링은 고능률절삭의 이점 때문에 널리 사용되는 금속절삭 가공방법중의 하나이다. 그러나 밀링커터는 단속절삭 공구로서 절삭 날의 단속절삭작용에 의한 변동절삭력과, 여러 날의 동시가공에 의한 절삭력의 교란 때문에 가공능률, 가공정밀도, 기계와 공구의 수명향상에 문제가 되어 왔다. 이러한 문제점들을 해결하기 위하여 기계설계자들은 절삭력의 교란에 의하여 일어나는 진동을 줄이기 위하여 기계구조의 강성을 증가시켰으나 이석은 고비용을 필요로 하게 되므로 공구 형상을 개선하여 안정된 절삭을 시도하였다.

간이 Fine-Blanking 가공 기술 개발

  • 윤경구;황경현;이성국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.49-52
    • /
    • 1993
  • 금속의 가공공정에 있어 중요한 인자중의 하나인 재료의 연성은 환경뿐만 아니라 주변압력에 따라 변화한다는 사실이 20세기에 들어 여러 연구자들에 의해 밝혀졌고 1950년대 Birdgman에 의해 최초로 실험적인 방법으로 증면되었다. 재료의 이와같은 현상을 압력유도연성이라 하는데 이는 주변압력이 재료 내부에서의 공동발생 및 그 성장에 관계하기 때문인 것으로 알려졌다. 공동의 합체 및 성장은 연성파괴의 전체조건이 되므로 이를 억제하면 성형성 및 연성이 증가됨을 알 수 있다. 금속의 압력 유도 연성을 이용한 가공방법을 가압금속형형이라 한다. 최근에 가압금속형의 범주는 크게늘고 있 는데 특히, 성형,블랭킹, 분말야금법 등에 널리 이용되고 있다. 정수압의 크기에 다른전단면의 상태 변화 즉, 소성 변형능에 관한 연구는 Fine-Blanking가공이론에 적용, 해석되고 있다.

강소성 유한요소법에 의한 비정상상태 금속 성형 해석에서 형상갱신기법에 관한 연구

  • 최영;여홍태;허관도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.58-58
    • /
    • 2004
  • 현재 금속 성형공정에 대한 해석법으로 강소성 유한요소법이 널리 이용되고 있다. 강소성 유한요소법에서는 주어진 시간에서 속도장을 얻고 가공물 형상을 시간증분 만큼 갱신하는 과정을 반복하여 비정상상태 금속성형공정의 해석한다. 일반적인 강소성 유한요소법은 형상갱신(Geometry update) 과정에서 오일러법(Euler method)을 이용한다. 오일러법에서는 시간증분의 크기가 해의 정밀도에 중요한 인자이다. 충분히 정밀한 해를 얻기 위해, 작은 시간증분을 이용하여 비정상상태 금속성형공정을 해석함으로써 해석시간이 많이 걸리는 단점이 있으며 형상갱신에 따른 가공물 체적손실(Volume loss)이 발생한다.(중략)

  • PDF

공작기계기술의 현재와 미래(3) (Machine Tool Technology;The Present And The Future(3))

  • 강철희
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.5-12
    • /
    • 1995
  • 전술한 바와 같이 공작기계 기술은 고정밀화, 고속화 고성능화의 추세로 발전해 나가고 있다. 고속 절삭이라고 하면 직감적으로 주축이 수만 rpm으로 회전하면서 어떤 재료를 가공할 수 있는 MC의 고속 주축을 생각하게 된다. 그러나, 이와 같은 고속절삭은 A1이나 Plastic등 재료를 가공 하는데 국한되고 있으며, 철계금속의 고속절삭이란 정의는 절삭속도를 수백m/min의 초고속 가공 뿐만 아니라 '가공시간의 단축'도 고속 가공의 정의에 포함시켜서 이해해야되며 가공물의 소재가 일반 강철, 열처리된 강철, Ceramics재료, 난삭재료 등의 고속절삭을 위해 개발된 Tooling기술에 대한 검토 필요성이 급속히 증가하고 있다.

  • PDF

광산란을 이용한 미소표면결함의 비접촉측정법에 관한 연구

  • 강영준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 춘계학술대회 논문집
    • /
    • pp.113-120
    • /
    • 1991
  • 근년, 정밀가공기술의 진보에 따라 AI 합금이나 동등의 연질금속을 이용한 고출력 Laser용 Mirror, 전자계산용 자기Disc기반, Laser Printer용 PloygonMirror등의 Opto-electronics 부품이 경면(Mirror Surface)절삭가공에 의해서, 또 LSI용 Silicon Wafer의 가공은 연마가공에 의해서 nmRmax의 표면조도로 마무리 가공되고 있다. 본 연구에서는 고출력 Laser용 Mirror, 자기Disc기반, Silicon Wafer와 같은 경면(표면 조도 submicron이하)에 존재하는 미소표면결함을 정량적이며, 고속측정이 가능한 방법인 새로운 측정법을 제안하고, 이 시스템을 생산라인에서 가공과 동시에 검사하는 In-process측정이 가능한 특정 시스템의 개발을 최종목표로 하고 있다.

마름모꼴 다이에 의한 사각빌렛 밀폐형단조의 힘평형 해석

  • 최재찬;김병민;김진무;이진희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.43-48
    • /
    • 1991
  • 최근 항공기 및 자동차 관련산업 등의 급속한 발전에 따라 정밀도가 높고 결함이 없는 제품을 단기간에 생산하기 위한 금속성형공정의 가공법 및 해석 방법에 대한 연구가 활발하다. 금속성형공정에서의 주된 공학적 관심사는 원하는 형상의 제품을 내부결함없이 생산하기 위한 성형하중과 금속유동의 예측 및 응력분포 등이다. 그러나 해석적인 방법으로 실제 금속성형문제에 대한 완전해를 얻는 것은 매우 어려우므로 실제해에 근접한 근사해를 구한다.(중략)

  • PDF

소성가공에 관한 몇 가지 현상 해설

  • 최재찬
    • 한국정밀공학회지
    • /
    • 제2권3호
    • /
    • pp.5-12
    • /
    • 1985
  • 압력유도연성(Pressure-lnduced Ductility) : 금속성형공정에서의 가장 중요한 인자는 가공물의 연성이다. 금속학적인 측면에서의 연성이란 실온에서 측정되는 것이며 가장 일반적인 연성연성측정방법은 인장시험이다. 금속재료의 연성을 증가시키기 위한 보통의 방법은 가열이며 대부분의 경우 가열된 재료는 보다 연하게 되므로, 보통가열은 변형한도를 증가시키고 성형력을 줄이기 위해 사용되어 왔다. 그 런데 Bridgman은 금속의 연성이란 금속학적 성질 뿐 아니라 주변압력이라는 기계적 방법에 의해서도 조정될 수 있다는 것을 지적하였다. 그는 응력-연신률 선도에서 얻어진 금속의 연성은 정수압을 가함으로써 증가될 수 있다는 것을 보였다. 중간응력, 평균응력, 정수압 응력, 정수압 압력, 주변압력 등의 용어가 같은 의미로 사용되어진다. 재료의 금속학적성질 뿐 아니라 공정의 압력도 변수로 작용하여 성형성을 개선시키게 되는데 이런 현상을 압력유도연성(PID)은 주변압력이 재료내부에서의 공동발생 및 그 성장을 억제하기 때문에 얻어진다. 공동 의 합체 및 성장은 연성파괴의 전제조건이 되므로 이러한 현상이 발생되지 않도록 하면 성형성 및 연성이 증가된다. 공동의 형성 및 예방 과 인장봉의 강도와 변형에 미치는 압력효과의 수학적 해석은 참고문헌 2에 나타나 있다. 이 압력유도연성은 Bobrowsky, Pugh와 Green, Alexander등에 의해 확인되었다.

  • PDF

유기 자기조립 단분자막과 나노프로브 레이저 패터닝을 이용한 금속박막 미세 형상 가공 기술

  • 최무진;장원석;김재구;조성학;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.159-159
    • /
    • 2004
  • 금속 박막 위의 알칸티올분자의 흡착에 의한 자기조립단분자막(Self-Assembled Monolayers)은 접착 방지, 마찰 저하 등의 기능을 가진 코팅층으로서의 응용과 분자 또는 생분자의 미세 구조물 형성을 위한 방법으로 널리 연구되어지고 있다. 이러한 연구 중에서 특히 자기조립단분자막의 매우 얇은 두께와 금속 박막의 선택적 식각을 위한 안정적인 리지스트(Photo Resist)로서의 특징을 활용한 극미세 패터닝에 대한 연구가 활발히 진행되고 있다.(중략)

  • PDF

마이크로 금속분말사출성형 기술 (Micro Metal Powder Injection Molding Technology)

  • 김순욱;류성수;백응률
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.179-185
    • /
    • 2004
  • 통상적인 금속분말의 성형은 분말야금 공정으로 이루어지기 때문에 복잡한 형상의 부품을 구현하는 데는 제약이 있다. 하지만, 1970년대 후반 이래 새로운 금속분말의 성형기술로 크게 각광을 받으며 연구되고 있는 금속분말사출성형(Metal Powder Injection Molding, MIM) 기술을 이용하면 다양한 형태의 부품을 성형할 수 있다 최근에는 이러한 MIM 기술을 이용하여 다양한 산업분야에 응용될 수 있는 마이크로 부품을 제조하고자 하는 연구개발이 주목받고 있다./sup 1)/ 현재까지는 마이크로 부품을 제조하는 원천기술이 반도체 공정기술이나 마이크로 기계가공기술에 크게 의존하고 있다./sup 2,3)/ 특히, 경제적 효용성이라는 관점에서 수 마이크로 이하의 극미세 구조물은 반도체 공정기술을 이용하여 성형하는 것이 유리하며, 1㎜의 치수를 갖는 미세 구조물은 마이크로 기계가공기술로 제조하는 것이 적합하다(그림 1). 하지만, 수십 마이크로에서 수백 마이크로의 치수를 갖는 구조물 제조에 있어서 앞선 두 공정기술은 응용 재료의 종류와 복합한 형상의 대량생산에 한계가 있다. 비록 반도체 공정기술에서 박막 증착과 전기화학적 도금기술을 이용한 표면미세가공 기술에 의해 수십 마이크로 이내의 치수를 갖는 미세 구조물을 정밀하게 성형하지만,/sup 4,5,)/ 수백 마이크로 크기의 치수를 반도체공정기술로 구현하기는 곤란하다. 또한, 마이크로 기계가공기술도 높은 가공 정밀도를 유지하며 수백 마이크로 크기의 구조물을 가공할 수 있지만 복잡한 모양의 형태를 대량생산하기에는 적합하지 않다.