• Title/Summary/Keyword: 정밀정형

Search Result 117, Processing Time 0.023 seconds

연구실탐방 - 부산대 정밀정형 및 금형가공 연구센터, 정밀가공 설계ㆍ제작 자동화

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.35 no.3 s.394
    • /
    • pp.30-31
    • /
    • 2002
  • 부산대 정밀정형 및 금형가공 연구센터는 항공기, 자동차, 철도차량, 고속전철 및 전기전자 제품들의 부품산업이 경쟁력을 갖추게 하기 위해 1994년 3월 문을 열었다. 96년 영국 버밍햄대학에 현지 랩을 설치한 후 미국, 일본대학과도 연구협력을 하고 있다.

  • PDF

A Study on Flashless Non-Axisymmetric Forging (플래시 없는 비축대칭 단조에 관한 연구)

  • Bae, Won-Byong;Kim, Young-Ho;Choi, Jae-Chan;Lee, Jong-Heon;Kim, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.42-52
    • /
    • 1995
  • An UBET(Upper Bound Elemental Techniquel) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless non-axisymmetric forging. To analyze the process easily, it is suggested that the deforma- tion is divided into two different parts. Those are axisymmetric part in corner and plane- strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, form which the upper-bound forging load, the flow pattern, the grid pattern, the velocity distribution and the effective strain are deter- mined. To show the merit of flashless forging, the results of flashless and flash-forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

A nesting system for blanking or piercing of irregular-shaped sheet metal products (불규칙형상 박판제품의 블랭킹용 네스팅 시스템)

  • Choi, J.C.;Kim, B.M.;Kim, C.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.171-179
    • /
    • 1997
  • This paper describes a nesting system of a computer-aided design of blanking and piercing for irregularly shaped sheet metal products. An approach to the system is based on knowledge-based rules. A nesting system is designed by considering several factors, such as utilization ratio which minimises the scrab for single or pairwise operation, bridge width, grain orientation and design requirements which maximise the strength of the part when subsequent bending is involve. Therefore this system which was implemented blank layout and strip layout module can carry out a nesting with a best utilization and a process planning for irregular shaped sheet metal products in single or pairwise operation and generate the blank layout and strip layout in graphic forms. Knowledges for a nesting and a process planning are extracted from plasticity theories, relevant references and empirical know-hows of experts in blanking industries. This provides its efficiency and effectiveness for nesting irregularly shaped sheet metal products.

  • PDF

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder (Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Jeon, Chan-Hu;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Analysis of a Process Sequence in Precision Press Forming of Aperture and Construction of Design System (정밀 전자총 부품 Aperture 성형공정 해석 및 설계 시스템 구축)

  • Byun, S.K.;Huh, B.W.;Kang, B.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.76-84
    • /
    • 1997
  • A process sequence in precision press forming of electrnic components is investigated by the finite element method. Aperture, a key component of electronic gun, is formed through a sequence of about 15 operation, among which the beading & bending, the first piercing, the first coining, and the second coining operations are expected to be most critical in view of industrial experts opinions. Thus, the analysis per- formed by a commercial code MARC focuses on the three operations, and comparisons are made between the results of the analysis and the measurements of experimental forming of the component.

  • PDF

Ductile fracture analysis on the surface and internal fracture of cold forged products (냉간 단조품의 표면 및 내부에서의 연성파괴 해석)

  • Kim, Tae-Hyung;Ko, Dae-Cheol;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.94-101
    • /
    • 1996
  • This paper presents an investigation of the ability of the scheme to simultaneously accomplish both prediction of fracture initiation and analysis of deformation in cold forged products. The Cockcroft-Latham criterion which is successfully applied to a variety of loading situations is used in the present investigation to estimate if and where surface and internal fracture occur during the deformation process. The numerical predictions and experimental results of two types of fundamental cold metal forming process taken into account are compared. Finite element simulation combined with fracture criterion has successfully predicted the site of surface or internal fracture initiation and corresponding to level of deformation observed experimentally.

  • PDF

The Improvement of Bearing-Race Forming Process Using UBET Analysis (베어링레이스의 온간성형에서 UBET 해석에 의한 공정개선 및 유동구속조건의 향상)

  • Kim, Young-Ho;Bae, Won-Byong;Park, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.92-100
    • /
    • 1997
  • An upper-bound elemental technique (UBET) analysis is carried out to improve the material flow and to reduce the load of bearing-race forming process. The UBET analysis, which adapts the advantages of stream function and finite element method, is useful for predicting the profile of complex geometric bound- ary. From the UBET analysis, the forming load, the velocity distribution and the stream line of the deformed billet are determined by minimizing the total power consumption with respect to chosen parameters. The results of present UBET analysis are better than those of previous UBET analysis. Experiments have been carried out with model material plasticine billets at room temperature. The theoretical predictions for forming load and flow pattern(stream line) are in good agreement with the experimental results.

  • PDF

An Optimal Tool Selection Method for Pocket Machining (포켓형상가공을 위한 최적공구 선정방법)

  • Kyoung, Young-Min;Cho, Kyu-Kab;Jun, Cah-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.49-58
    • /
    • 1997
  • In process planning for pocket machining, the selection of tool size, tool path, overlap distance, and the calculation of machining time are very important factors to obtain the optimal process planning result. Among those factors, the tool size is the most important one because the others depend on tool size. And also, it is not easy to determine the optimal tool size even though the shape of pocket is simple. Therefore, the optimal selection of tool size is the most essential task in process planning for machining a pocket. This paper presents a method for selecting optimal toos in pocket machining. The branch and bound method is applied to select the optimal tools which minimize the machining time by using the range of feasible tools and the breadth-first search.

  • PDF

Feature Classification and Representation Method for Components of Injection Mold (사출금형부품의 특지형상의 분류 및 표현방법의 개발)

  • Kyoung, Young-Min;Ryu, Kwang-Ryel;Jeong, Yeong-Deug;Cho, Kyu-Kab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.148-158
    • /
    • 1995
  • This paper describes a hierarchical structure for feature definition and classification, and feature representation method based on frame structure for process planning of prismatic machined components of injection mold. The concept of Volume Removal Directions and Vertical Faces is proposed to develop a method to define and to classify features for components of injection mold systematically. A method for classifying features by the combination of volume removal directions and vertical faces is developed, and also a feature representation method by using frame structure to represent design and manufacturing information is presented.

  • PDF